Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323313776> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4323313776 abstract "Limited research has assessed the spatio-temporal distribution and chronic health effects of NO2 exposure, especially in developing countries, due to the lack of historical NO2 data. A gap-filling model was first adopted to impute the missing NO2 column densities from satellite, then an ensemble machine learning model incorporating three base learners was developed to estimate the spatiotemporal pattern of monthly mean NO2 concentrations at 0.05° spatial resolution from 2005 to 2020 in China. Further, we applied the exposure dataset with epidemiologically derived exposure response relations to estimate the annual NO2 associated mortality burdens in China. The coverage of satellite NO2 column densities increased from 46.9% to 100% after gap-filling. The ensemble model predictions had good agreement with observations, and the overall, temporal and spatial cross-validation (CV) R2 were 0.88, 0.82 and 0.73, respectively. In addition, our model can provide accurate historical NO2 concentrations, with both by-year CV R2 and external separate year validation R2 achieving 0.80. The estimated national NO2 levels showed a increasing trend during 2005-2011, then decreased gradually until 2020, especially in 2012-2015. The estimated annual mortality burden attributable to long-term NO2 exposure ranged from 305 thousand to 416 thousand, and varied considerably across provinces in China. This satellite-based ensemble model could provide reliable long-term NO2 predictions at a high spatial resolution with complete coverage for environmental and epidemiological studies in China. Our results also highlighted the heavy disease burden by NO2 and call for more targeted policies to reduce the emission of nitrogen oxides in China." @default.
- W4323313776 created "2023-03-07" @default.
- W4323313776 creator A5013978185 @default.
- W4323313776 creator A5053677811 @default.
- W4323313776 creator A5066709636 @default.
- W4323313776 creator A5067633456 @default.
- W4323313776 creator A5075943191 @default.
- W4323313776 date "2023-03-06" @default.
- W4323313776 modified "2023-10-18" @default.
- W4323313776 title "Satellite-based long-term spatiotemporal trends in ambient NO2 concentrations and attributable health burdens in China from 2005 to 2020" @default.
- W4323313776 doi "https://doi.org/10.22541/essoar.167810154.41184061/v1" @default.
- W4323313776 hasPublicationYear "2023" @default.
- W4323313776 type Work @default.
- W4323313776 citedByCount "0" @default.
- W4323313776 crossrefType "posted-content" @default.
- W4323313776 hasAuthorship W4323313776A5013978185 @default.
- W4323313776 hasAuthorship W4323313776A5053677811 @default.
- W4323313776 hasAuthorship W4323313776A5066709636 @default.
- W4323313776 hasAuthorship W4323313776A5067633456 @default.
- W4323313776 hasAuthorship W4323313776A5075943191 @default.
- W4323313776 hasBestOaLocation W43233137761 @default.
- W4323313776 hasConcept C100970517 @default.
- W4323313776 hasConcept C121332964 @default.
- W4323313776 hasConcept C127313418 @default.
- W4323313776 hasConcept C127413603 @default.
- W4323313776 hasConcept C146978453 @default.
- W4323313776 hasConcept C153294291 @default.
- W4323313776 hasConcept C166957645 @default.
- W4323313776 hasConcept C191935318 @default.
- W4323313776 hasConcept C19269812 @default.
- W4323313776 hasConcept C205649164 @default.
- W4323313776 hasConcept C2777016058 @default.
- W4323313776 hasConcept C39432304 @default.
- W4323313776 hasConcept C49204034 @default.
- W4323313776 hasConcept C61797465 @default.
- W4323313776 hasConcept C62520636 @default.
- W4323313776 hasConcept C62649853 @default.
- W4323313776 hasConcept C71924100 @default.
- W4323313776 hasConcept C99454951 @default.
- W4323313776 hasConceptScore W4323313776C100970517 @default.
- W4323313776 hasConceptScore W4323313776C121332964 @default.
- W4323313776 hasConceptScore W4323313776C127313418 @default.
- W4323313776 hasConceptScore W4323313776C127413603 @default.
- W4323313776 hasConceptScore W4323313776C146978453 @default.
- W4323313776 hasConceptScore W4323313776C153294291 @default.
- W4323313776 hasConceptScore W4323313776C166957645 @default.
- W4323313776 hasConceptScore W4323313776C191935318 @default.
- W4323313776 hasConceptScore W4323313776C19269812 @default.
- W4323313776 hasConceptScore W4323313776C205649164 @default.
- W4323313776 hasConceptScore W4323313776C2777016058 @default.
- W4323313776 hasConceptScore W4323313776C39432304 @default.
- W4323313776 hasConceptScore W4323313776C49204034 @default.
- W4323313776 hasConceptScore W4323313776C61797465 @default.
- W4323313776 hasConceptScore W4323313776C62520636 @default.
- W4323313776 hasConceptScore W4323313776C62649853 @default.
- W4323313776 hasConceptScore W4323313776C71924100 @default.
- W4323313776 hasConceptScore W4323313776C99454951 @default.
- W4323313776 hasLocation W43233137761 @default.
- W4323313776 hasOpenAccess W4323313776 @default.
- W4323313776 hasPrimaryLocation W43233137761 @default.
- W4323313776 hasRelatedWork W1974250593 @default.
- W4323313776 hasRelatedWork W2350634458 @default.
- W4323313776 hasRelatedWork W2354442963 @default.
- W4323313776 hasRelatedWork W2363039985 @default.
- W4323313776 hasRelatedWork W2369742755 @default.
- W4323313776 hasRelatedWork W2567077254 @default.
- W4323313776 hasRelatedWork W2748952813 @default.
- W4323313776 hasRelatedWork W2899084033 @default.
- W4323313776 hasRelatedWork W2988513550 @default.
- W4323313776 hasRelatedWork W4319298647 @default.
- W4323313776 isParatext "false" @default.
- W4323313776 isRetracted "false" @default.
- W4323313776 workType "article" @default.