Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323314711> ?p ?o ?g. }
- W4323314711 endingPage "3273" @default.
- W4323314711 startingPage "3273" @default.
- W4323314711 abstract "Unmanned Combat Aerial Vehicle (UCAV) path planning is a challenging optimization problem that seeks the optimal or near-optimal flight path for military operations. The problem is further complicated by the need to operate in a complex battlefield environment with minimal military risk and fewer constraints. To address these challenges, highly sophisticated control methods are required, and Swarm Intelligence (SI) algorithms have proven to be one of the most effective approaches. In this context, a study has been conducted to improve the existing Spider Monkey Optimization (SMO) algorithm by integrating a new explorative local search algorithm called Beta-Hill Climbing Optimizer (BHC) into the three main phases of SMO. The result is a novel SMO variant called SMOBHC, which offers improved performance in terms of intensification, exploration, avoiding local minima, and convergence speed. Specifically, BHC is integrated into the main SMO algorithmic structure for three purposes: to improve the new Spider Monkey solution generated in the SMO Local Leader Phase (LLP), to enhance the new Spider Monkey solution produced in the SMO Global Leader Phase (GLP), and to update the positions of all Local Leader members of each local group under a specific condition in the SMO Local Leader Decision (LLD) phase. To demonstrate the effectiveness of the proposed algorithm, SMOBHC is applied to UCAV path planning in 2D space on three different complex battlefields with ten, thirty, and twenty randomly distributed threats under various conditions. Experimental results show that SMOBHC outperforms the original SMO algorithm and a large set of twenty-six powerful and recent evolutionary algorithms. The proposed method shows better results in terms of the best, worst, mean, and standard deviation outcomes obtained from twenty independent runs on small-scale (D = 30), medium-scale (D = 60), and large-scale (D = 90) battlefields. Statistically, SMOBHC performs better on the three battlefields, except in the case of SMO, where there is no significant difference between them. Overall, the proposed SMO variant significantly improves the obstacle avoidance capability of the SMO algorithm and enhances the stability of the final results. The study provides an effective approach to UCAV path planning that can be useful in military operations with complex battlefield environments." @default.
- W4323314711 created "2023-03-07" @default.
- W4323314711 creator A5003491781 @default.
- W4323314711 creator A5007281444 @default.
- W4323314711 creator A5007517435 @default.
- W4323314711 creator A5023649619 @default.
- W4323314711 creator A5042443113 @default.
- W4323314711 creator A5058210116 @default.
- W4323314711 creator A5077940980 @default.
- W4323314711 date "2023-03-03" @default.
- W4323314711 modified "2023-10-05" @default.
- W4323314711 title "A Spider Monkey Optimization Based on Beta-Hill Climbing Optimizer for Unmanned Combat Aerial Vehicle (UCAV)" @default.
- W4323314711 cites W1972279253 @default.
- W4323314711 cites W1976744965 @default.
- W4323314711 cites W1985334587 @default.
- W4323314711 cites W2001979953 @default.
- W4323314711 cites W2061438946 @default.
- W4323314711 cites W2072372183 @default.
- W4323314711 cites W2126050191 @default.
- W4323314711 cites W2288375906 @default.
- W4323314711 cites W2290883490 @default.
- W4323314711 cites W2343247866 @default.
- W4323314711 cites W2963103847 @default.
- W4323314711 cites W2985845430 @default.
- W4323314711 cites W2998566163 @default.
- W4323314711 cites W3011277131 @default.
- W4323314711 cites W3014054793 @default.
- W4323314711 cites W3017249714 @default.
- W4323314711 cites W3034873675 @default.
- W4323314711 cites W3036557346 @default.
- W4323314711 cites W3038102268 @default.
- W4323314711 cites W3043455308 @default.
- W4323314711 cites W3080282496 @default.
- W4323314711 cites W3092246906 @default.
- W4323314711 cites W3119051141 @default.
- W4323314711 cites W3119371657 @default.
- W4323314711 cites W3119493330 @default.
- W4323314711 cites W3133785899 @default.
- W4323314711 cites W3144497966 @default.
- W4323314711 cites W3155489633 @default.
- W4323314711 cites W3159126237 @default.
- W4323314711 cites W3159136932 @default.
- W4323314711 cites W3198804470 @default.
- W4323314711 cites W3201272818 @default.
- W4323314711 cites W3203401755 @default.
- W4323314711 cites W3211434935 @default.
- W4323314711 cites W414544266 @default.
- W4323314711 cites W4200118636 @default.
- W4323314711 cites W4200220124 @default.
- W4323314711 cites W4200512365 @default.
- W4323314711 cites W4206918024 @default.
- W4323314711 cites W4210401277 @default.
- W4323314711 cites W4211084846 @default.
- W4323314711 cites W4212993228 @default.
- W4323314711 cites W4213080281 @default.
- W4323314711 cites W4214504571 @default.
- W4323314711 cites W4223526404 @default.
- W4323314711 cites W4223954537 @default.
- W4323314711 cites W4225120267 @default.
- W4323314711 cites W4226321594 @default.
- W4323314711 cites W4232526212 @default.
- W4323314711 cites W4243747133 @default.
- W4323314711 cites W4281687867 @default.
- W4323314711 cites W4283461979 @default.
- W4323314711 cites W4285029663 @default.
- W4323314711 cites W4285392085 @default.
- W4323314711 cites W4285585607 @default.
- W4323314711 cites W4290861058 @default.
- W4323314711 cites W4297836433 @default.
- W4323314711 cites W4309914107 @default.
- W4323314711 cites W4311453107 @default.
- W4323314711 cites W4311523872 @default.
- W4323314711 cites W4313216672 @default.
- W4323314711 cites W4313641031 @default.
- W4323314711 cites W4313889650 @default.
- W4323314711 cites W4318162656 @default.
- W4323314711 cites W4319304664 @default.
- W4323314711 cites W4319721356 @default.
- W4323314711 doi "https://doi.org/10.3390/app13053273" @default.
- W4323314711 hasPublicationYear "2023" @default.
- W4323314711 type Work @default.
- W4323314711 citedByCount "1" @default.
- W4323314711 crossrefType "journal-article" @default.
- W4323314711 hasAuthorship W4323314711A5003491781 @default.
- W4323314711 hasAuthorship W4323314711A5007281444 @default.
- W4323314711 hasAuthorship W4323314711A5007517435 @default.
- W4323314711 hasAuthorship W4323314711A5023649619 @default.
- W4323314711 hasAuthorship W4323314711A5042443113 @default.
- W4323314711 hasAuthorship W4323314711A5058210116 @default.
- W4323314711 hasAuthorship W4323314711A5077940980 @default.
- W4323314711 hasBestOaLocation W43233147111 @default.
- W4323314711 hasConcept C126255220 @default.
- W4323314711 hasConcept C134306372 @default.
- W4323314711 hasConcept C154945302 @default.
- W4323314711 hasConcept C162324750 @default.
- W4323314711 hasConcept C166957645 @default.
- W4323314711 hasConcept C186633575 @default.
- W4323314711 hasConcept C199360897 @default.