Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323315622> ?p ?o ?g. }
- W4323315622 endingPage "1433" @default.
- W4323315622 startingPage "1433" @default.
- W4323315622 abstract "The rapid acquisition of high-resolution spatial distribution of soil organic matter (SOM) at the field scale is essential for precision agriculture. The UAV imaging hyperspectral technology, with its high spatial resolution and timeliness, can fill the research gap between ground-based monitoring and remote sensing. This study aimed to test the feasibility of using UAV hyperspectral data (400–1000 nm) with a small-sized calibration sample set for mapping SOM at a 1 m resolution in typical low-relief black soil areas of Northeast China. The experiment was conducted in an approximately 20 ha field. For calibration, 20 samples were collected using a 100 × 100 m grid sampling strategy, while 20 samples were randomly collected for independent validation. UAV captured hyperspectral images with a spatial resolution of 0.05 × 0.05 m. The extracted spectra within every 1 × 1 m were then averaged to represent the spectra of that grid; this procedure was also performed across the whole field. Upon applying various spectral pretreatments, including absorbance conversion, multiple scattering correction, Savitzky–Golay smoothing filtering, and first-order differentiation, the absolute maximum values of the correlation coefficients of the spectra for SOM increased from 0.41 to 0.58. Importance analysis from the optimal random forest (RF) model showed that the characterized bands of SOM were located in the 450–600 and 750–900 nm regions. When the RF model was used, the UAV hyperspectra data (UAV-RF) were able to successfully predict SOM, with an R2 of 0.53 and RMSE of 1.48 g kg−1. The prediction accuracy was then compared with that obtained using ordinary kriging (OK) and the RF model based on proximal sensing (PS-RF) with the same number of calibration samples. However, the OK method failed to predict the SOM accuracy (RMSE = 2.17 g kg−1; R2 = 0.02) due to a low sampling density. The semi-covariance function was unable to describe the spatial variability of SOM effectively. When the sampling density was increased to 50 × 50 m, OK successfully predicted SOM, with RMSE = 1.37 g kg−1 and R2 = 0.59, and its results were comparable to those of UAV-RF. The prediction accuracy of PS-RF was generally consistent with that of UAV-RF, with RMSE values of 1.41 g kg−1 and 1.48 g kg−1 and R2 values of 0.57 and 0.53, respectively, which indicated that SOM prediction based on UAV-RF is feasible. Additionally, compared with the PS platforms, the UAV hyperspectral technology could simultaneously provide spectral information of tens or even hundreds of continuous bands and spatial information at the same time. This study provides a reference for further research and development of UAV hyperspectral techniques for fine-scale SOM mapping using a small number of samples." @default.
- W4323315622 created "2023-03-07" @default.
- W4323315622 creator A5008234620 @default.
- W4323315622 creator A5010230084 @default.
- W4323315622 creator A5012585034 @default.
- W4323315622 creator A5041971632 @default.
- W4323315622 creator A5077901649 @default.
- W4323315622 creator A5080275216 @default.
- W4323315622 creator A5089681682 @default.
- W4323315622 date "2023-03-03" @default.
- W4323315622 modified "2023-10-18" @default.
- W4323315622 title "High-Resolution Mapping of Soil Organic Matter at the Field Scale Using UAV Hyperspectral Images with a Small Calibration Dataset" @default.
- W4323315622 cites W1969839347 @default.
- W4323315622 cites W1979464002 @default.
- W4323315622 cites W1994623745 @default.
- W4323315622 cites W1998053851 @default.
- W4323315622 cites W2016846950 @default.
- W4323315622 cites W2021409682 @default.
- W4323315622 cites W2045125597 @default.
- W4323315622 cites W2052903566 @default.
- W4323315622 cites W2056193610 @default.
- W4323315622 cites W2071587467 @default.
- W4323315622 cites W2088374664 @default.
- W4323315622 cites W2119908547 @default.
- W4323315622 cites W2139977687 @default.
- W4323315622 cites W2317218807 @default.
- W4323315622 cites W2765366036 @default.
- W4323315622 cites W2801068453 @default.
- W4323315622 cites W2889273070 @default.
- W4323315622 cites W2890296937 @default.
- W4323315622 cites W2893106156 @default.
- W4323315622 cites W2894465964 @default.
- W4323315622 cites W2911964244 @default.
- W4323315622 cites W2912648180 @default.
- W4323315622 cites W2917539806 @default.
- W4323315622 cites W2934977212 @default.
- W4323315622 cites W2943184968 @default.
- W4323315622 cites W2983056308 @default.
- W4323315622 cites W2994295705 @default.
- W4323315622 cites W3001084290 @default.
- W4323315622 cites W3035986166 @default.
- W4323315622 cites W3169023779 @default.
- W4323315622 cites W3216879711 @default.
- W4323315622 cites W3217012577 @default.
- W4323315622 cites W4283399537 @default.
- W4323315622 doi "https://doi.org/10.3390/rs15051433" @default.
- W4323315622 hasPublicationYear "2023" @default.
- W4323315622 type Work @default.
- W4323315622 citedByCount "4" @default.
- W4323315622 countsByYear W43233156222023 @default.
- W4323315622 crossrefType "journal-article" @default.
- W4323315622 hasAuthorship W4323315622A5008234620 @default.
- W4323315622 hasAuthorship W4323315622A5010230084 @default.
- W4323315622 hasAuthorship W4323315622A5012585034 @default.
- W4323315622 hasAuthorship W4323315622A5041971632 @default.
- W4323315622 hasAuthorship W4323315622A5077901649 @default.
- W4323315622 hasAuthorship W4323315622A5080275216 @default.
- W4323315622 hasAuthorship W4323315622A5089681682 @default.
- W4323315622 hasBestOaLocation W43233156221 @default.
- W4323315622 hasConcept C105795698 @default.
- W4323315622 hasConcept C106131492 @default.
- W4323315622 hasConcept C127313418 @default.
- W4323315622 hasConcept C140779682 @default.
- W4323315622 hasConcept C154945302 @default.
- W4323315622 hasConcept C159078339 @default.
- W4323315622 hasConcept C165838908 @default.
- W4323315622 hasConcept C205372480 @default.
- W4323315622 hasConcept C31972630 @default.
- W4323315622 hasConcept C33923547 @default.
- W4323315622 hasConcept C39432304 @default.
- W4323315622 hasConcept C41008148 @default.
- W4323315622 hasConcept C62649853 @default.
- W4323315622 hasConceptScore W4323315622C105795698 @default.
- W4323315622 hasConceptScore W4323315622C106131492 @default.
- W4323315622 hasConceptScore W4323315622C127313418 @default.
- W4323315622 hasConceptScore W4323315622C140779682 @default.
- W4323315622 hasConceptScore W4323315622C154945302 @default.
- W4323315622 hasConceptScore W4323315622C159078339 @default.
- W4323315622 hasConceptScore W4323315622C165838908 @default.
- W4323315622 hasConceptScore W4323315622C205372480 @default.
- W4323315622 hasConceptScore W4323315622C31972630 @default.
- W4323315622 hasConceptScore W4323315622C33923547 @default.
- W4323315622 hasConceptScore W4323315622C39432304 @default.
- W4323315622 hasConceptScore W4323315622C41008148 @default.
- W4323315622 hasConceptScore W4323315622C62649853 @default.
- W4323315622 hasFunder F4320321001 @default.
- W4323315622 hasFunder F4320326832 @default.
- W4323315622 hasFunder F4320335777 @default.
- W4323315622 hasIssue "5" @default.
- W4323315622 hasLocation W43233156221 @default.
- W4323315622 hasOpenAccess W4323315622 @default.
- W4323315622 hasPrimaryLocation W43233156221 @default.
- W4323315622 hasRelatedWork W2002304416 @default.
- W4323315622 hasRelatedWork W2004982469 @default.
- W4323315622 hasRelatedWork W2046570986 @default.
- W4323315622 hasRelatedWork W2168549731 @default.
- W4323315622 hasRelatedWork W2540644541 @default.
- W4323315622 hasRelatedWork W2547110604 @default.