Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323317664> ?p ?o ?g. }
- W4323317664 endingPage "250" @default.
- W4323317664 startingPage "250" @default.
- W4323317664 abstract "This paper aims to build a Self-supervised Fault Detection Model for UAVs combined with an Auto-Encoder. With the development of data science, it is imperative to detect UAV faults and improve their safety. Many factors affect the fault of a UAV, such as the voltage of the generator, angle of attack, and position of the rudder surface. A UAV is a typical complex system, and its flight data are typical high-dimensional large sample data sets. In practical applications such as UAV fault detection, the fault data only appear in a small part of the data sets. In this study, representation learning is used to extract the normal features of the flight data and reduce the dimensions of the data. The normal data are used for the training of the Auto-Encoder, and the reconstruction loss is used as the criterion for fault detection. An Improved Auto-Encoder suitable for UAV Flight Data Sets is proposed in this paper. In the Auto-Encoder, we use wavelet analysis to extract the low-frequency signals with different frequencies from the flight data. The Auto-Encoder is used for the feature extraction and reconstruction of the low-frequency signals with different frequencies. To improve the effectiveness of the fault localization at inference, we develop a new fault factor location model, which is based on the reconstruction loss of the Auto-Encoder and edge detection operator. The UAV Flight Data Sets are used for hard-landing detection, and an average accuracy of 91.01% is obtained. Compared with other models, the results suggest that the developed Self-supervised Fault Detection Model for UAVs has better accuracy. Concluding this study, an explanation is provided concerning the proposed model’s good results." @default.
- W4323317664 created "2023-03-07" @default.
- W4323317664 creator A5013201771 @default.
- W4323317664 creator A5034880066 @default.
- W4323317664 creator A5045634084 @default.
- W4323317664 creator A5048480979 @default.
- W4323317664 creator A5075428656 @default.
- W4323317664 date "2023-03-06" @default.
- W4323317664 modified "2023-10-18" @default.
- W4323317664 title "A Self-Supervised Fault Detection for UAV Based on Unbalanced Flight Data Representation Learning and Wavelet Analysis" @default.
- W4323317664 cites W2013719875 @default.
- W4323317664 cites W2263289545 @default.
- W4323317664 cites W2287029277 @default.
- W4323317664 cites W2299550941 @default.
- W4323317664 cites W2365322416 @default.
- W4323317664 cites W2518980640 @default.
- W4323317664 cites W2770344288 @default.
- W4323317664 cites W2783376403 @default.
- W4323317664 cites W2807725536 @default.
- W4323317664 cites W2808286220 @default.
- W4323317664 cites W2886924644 @default.
- W4323317664 cites W2938066132 @default.
- W4323317664 cites W3118853265 @default.
- W4323317664 cites W3135971763 @default.
- W4323317664 cites W3136583682 @default.
- W4323317664 cites W3142481724 @default.
- W4323317664 cites W3156863009 @default.
- W4323317664 cites W3167251133 @default.
- W4323317664 cites W3168684497 @default.
- W4323317664 cites W3211188696 @default.
- W4323317664 cites W3217107950 @default.
- W4323317664 cites W3217264988 @default.
- W4323317664 cites W4205104838 @default.
- W4323317664 cites W4205348131 @default.
- W4323317664 cites W4210842663 @default.
- W4323317664 cites W4224913678 @default.
- W4323317664 cites W4252222626 @default.
- W4323317664 cites W4280519255 @default.
- W4323317664 cites W4280549546 @default.
- W4323317664 cites W4280605518 @default.
- W4323317664 cites W4282836254 @default.
- W4323317664 cites W4285293775 @default.
- W4323317664 cites W4286470717 @default.
- W4323317664 cites W4288036850 @default.
- W4323317664 cites W4288048787 @default.
- W4323317664 cites W4288060358 @default.
- W4323317664 cites W4293370887 @default.
- W4323317664 cites W4294662010 @default.
- W4323317664 cites W4297237945 @default.
- W4323317664 cites W4312262772 @default.
- W4323317664 cites W4312828142 @default.
- W4323317664 doi "https://doi.org/10.3390/aerospace10030250" @default.
- W4323317664 hasPublicationYear "2023" @default.
- W4323317664 type Work @default.
- W4323317664 citedByCount "0" @default.
- W4323317664 crossrefType "journal-article" @default.
- W4323317664 hasAuthorship W4323317664A5013201771 @default.
- W4323317664 hasAuthorship W4323317664A5034880066 @default.
- W4323317664 hasAuthorship W4323317664A5045634084 @default.
- W4323317664 hasAuthorship W4323317664A5048480979 @default.
- W4323317664 hasAuthorship W4323317664A5075428656 @default.
- W4323317664 hasBestOaLocation W43233176641 @default.
- W4323317664 hasConcept C101738243 @default.
- W4323317664 hasConcept C108583219 @default.
- W4323317664 hasConcept C111919701 @default.
- W4323317664 hasConcept C118505674 @default.
- W4323317664 hasConcept C127313418 @default.
- W4323317664 hasConcept C152745839 @default.
- W4323317664 hasConcept C153180895 @default.
- W4323317664 hasConcept C154945302 @default.
- W4323317664 hasConcept C165205528 @default.
- W4323317664 hasConcept C172707124 @default.
- W4323317664 hasConcept C175551986 @default.
- W4323317664 hasConcept C31972630 @default.
- W4323317664 hasConcept C41008148 @default.
- W4323317664 hasConcept C47432892 @default.
- W4323317664 hasConcept C52622490 @default.
- W4323317664 hasConcept C79403827 @default.
- W4323317664 hasConceptScore W4323317664C101738243 @default.
- W4323317664 hasConceptScore W4323317664C108583219 @default.
- W4323317664 hasConceptScore W4323317664C111919701 @default.
- W4323317664 hasConceptScore W4323317664C118505674 @default.
- W4323317664 hasConceptScore W4323317664C127313418 @default.
- W4323317664 hasConceptScore W4323317664C152745839 @default.
- W4323317664 hasConceptScore W4323317664C153180895 @default.
- W4323317664 hasConceptScore W4323317664C154945302 @default.
- W4323317664 hasConceptScore W4323317664C165205528 @default.
- W4323317664 hasConceptScore W4323317664C172707124 @default.
- W4323317664 hasConceptScore W4323317664C175551986 @default.
- W4323317664 hasConceptScore W4323317664C31972630 @default.
- W4323317664 hasConceptScore W4323317664C41008148 @default.
- W4323317664 hasConceptScore W4323317664C47432892 @default.
- W4323317664 hasConceptScore W4323317664C52622490 @default.
- W4323317664 hasConceptScore W4323317664C79403827 @default.
- W4323317664 hasIssue "3" @default.
- W4323317664 hasLocation W43233176641 @default.
- W4323317664 hasOpenAccess W4323317664 @default.
- W4323317664 hasPrimaryLocation W43233176641 @default.