Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323320302> ?p ?o ?g. }
- W4323320302 abstract "Drought stress (DS) is one of the most frequently occurring stresses in tomato plants. Detecting tomato plant DS is vital for optimizing irrigation and improving fruit quality. In this study, a DS identification method using the multi-features of hyperspectral imaging (HSI) and subsample fusion was proposed. First, the HSI images were measured under imaging condition with supplemental blue lights, and the reflectance spectra were extracted from the HSI images of young and mature leaves at different DS levels (well-watered, reduced-watered, and deficient-watered treatment). The effective wavelengths (EWs) were screened by the genetic algorithm. Second, the reference image was determined by ReliefF, and the first four reflectance images of EWs that are weakly correlated with the reference image and mutually irrelevant were obtained using Pearson's correlation analysis. The reflectance image set (RIS) was determined by evaluating the superposition effect of reflectance images on identification. The spectra of EWs and the image features extracted from the RIS by LeNet-5 were adopted to construct DS identification models based on support vector machine (SVM), random forest, and dense convolutional network. Third, the subsample fusion integrating the spectra and image features of young and mature leaves was used to improve the identification further. The results showed that supplemental blue lights can effectively remove the high-frequency noise and obtain high-quality HSI images. The positive effect of the combination of spectra of EWs and image features for DS identification proved that RIS contains feature information pointing to DS. Global optimal classification performance was achieved by SVM and subsample fusion, with a classification accuracy of 95.90% and 95.78% for calibration and prediction sets, respectively. Overall, the proposed method can provide an accurate and reliable analysis for tomato plant DS and is hoped to be applied to other crop stresses." @default.
- W4323320302 created "2023-03-07" @default.
- W4323320302 creator A5026182016 @default.
- W4323320302 creator A5027505381 @default.
- W4323320302 creator A5034105308 @default.
- W4323320302 creator A5072869491 @default.
- W4323320302 creator A5075617938 @default.
- W4323320302 creator A5077173464 @default.
- W4323320302 creator A5078106495 @default.
- W4323320302 creator A5083792909 @default.
- W4323320302 creator A5090283553 @default.
- W4323320302 date "2023-02-28" @default.
- W4323320302 modified "2023-10-18" @default.
- W4323320302 title "Drought stress identification of tomato plant using multi-features of hyperspectral imaging and subsample fusion" @default.
- W4323320302 cites W1567713933 @default.
- W4323320302 cites W1677796994 @default.
- W4323320302 cites W1964033287 @default.
- W4323320302 cites W1978256505 @default.
- W4323320302 cites W1980670731 @default.
- W4323320302 cites W1988763797 @default.
- W4323320302 cites W2007371340 @default.
- W4323320302 cites W2041928772 @default.
- W4323320302 cites W2042881442 @default.
- W4323320302 cites W2053767967 @default.
- W4323320302 cites W2124846822 @default.
- W4323320302 cites W2413784086 @default.
- W4323320302 cites W2416296674 @default.
- W4323320302 cites W2515382892 @default.
- W4323320302 cites W2569963742 @default.
- W4323320302 cites W2611517298 @default.
- W4323320302 cites W2770551492 @default.
- W4323320302 cites W2809918877 @default.
- W4323320302 cites W2894752453 @default.
- W4323320302 cites W2896851400 @default.
- W4323320302 cites W2898672176 @default.
- W4323320302 cites W2900626564 @default.
- W4323320302 cites W2910020070 @default.
- W4323320302 cites W2914390555 @default.
- W4323320302 cites W2914746283 @default.
- W4323320302 cites W2915809557 @default.
- W4323320302 cites W2942534666 @default.
- W4323320302 cites W2945372729 @default.
- W4323320302 cites W2946706963 @default.
- W4323320302 cites W2948449404 @default.
- W4323320302 cites W2950334518 @default.
- W4323320302 cites W2973754724 @default.
- W4323320302 cites W2996645533 @default.
- W4323320302 cites W2999811886 @default.
- W4323320302 cites W3006636736 @default.
- W4323320302 cites W3010740538 @default.
- W4323320302 cites W3011504327 @default.
- W4323320302 cites W3021367936 @default.
- W4323320302 cites W3038946594 @default.
- W4323320302 cites W3048260270 @default.
- W4323320302 cites W3088690709 @default.
- W4323320302 cites W3094130103 @default.
- W4323320302 cites W3094614341 @default.
- W4323320302 cites W3095915808 @default.
- W4323320302 cites W3120315711 @default.
- W4323320302 cites W3122716237 @default.
- W4323320302 cites W3123066429 @default.
- W4323320302 cites W3125847321 @default.
- W4323320302 cites W3150095517 @default.
- W4323320302 cites W3160241143 @default.
- W4323320302 cites W3162049852 @default.
- W4323320302 cites W3169824916 @default.
- W4323320302 cites W3172925069 @default.
- W4323320302 cites W3174848951 @default.
- W4323320302 cites W3185052415 @default.
- W4323320302 cites W3193290863 @default.
- W4323320302 cites W3195824554 @default.
- W4323320302 cites W3196967960 @default.
- W4323320302 cites W3198049484 @default.
- W4323320302 cites W3202608626 @default.
- W4323320302 cites W3207608835 @default.
- W4323320302 cites W3208227617 @default.
- W4323320302 cites W4200430108 @default.
- W4323320302 cites W4206987549 @default.
- W4323320302 cites W4210898161 @default.
- W4323320302 cites W4297017678 @default.
- W4323320302 cites W4311627260 @default.
- W4323320302 doi "https://doi.org/10.3389/fpls.2023.1073530" @default.
- W4323320302 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36925753" @default.
- W4323320302 hasPublicationYear "2023" @default.
- W4323320302 type Work @default.
- W4323320302 citedByCount "0" @default.
- W4323320302 crossrefType "journal-article" @default.
- W4323320302 hasAuthorship W4323320302A5026182016 @default.
- W4323320302 hasAuthorship W4323320302A5027505381 @default.
- W4323320302 hasAuthorship W4323320302A5034105308 @default.
- W4323320302 hasAuthorship W4323320302A5072869491 @default.
- W4323320302 hasAuthorship W4323320302A5075617938 @default.
- W4323320302 hasAuthorship W4323320302A5077173464 @default.
- W4323320302 hasAuthorship W4323320302A5078106495 @default.
- W4323320302 hasAuthorship W4323320302A5083792909 @default.
- W4323320302 hasAuthorship W4323320302A5090283553 @default.
- W4323320302 hasBestOaLocation W43233203021 @default.
- W4323320302 hasConcept C108597893 @default.
- W4323320302 hasConcept C115961682 @default.
- W4323320302 hasConcept C116834253 @default.