Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323322841> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4323322841 abstract "We study the problem of learning a function that maps context observations (input) to parameters of a submodular function (output). Our motivating case study is a specific type of vehicle routing problem, in which a team of Unmanned Ground Vehicles (UGVs) can serve as mobile charging stations to recharge a team of Unmanned Ground Vehicles (UAVs) that execute persistent monitoring tasks. {We want to learn the mapping from observations of UAV task routes and wind field to the parameters of a submodular objective function, which describes the distribution of landing positions of the UAVs .} Traditionally, such a learning problem is solved independently as a prediction phase without considering the downstream task optimization phase. However, the loss function used in prediction may be misaligned with our final goal, i.e., a good routing decision. Good performance in the isolated prediction phase does not necessarily lead to good decisions in the downstream routing task. In this paper, we propose a framework that incorporates task optimization as a differentiable layer in the prediction phase. Our framework allows end-to-end training of the prediction model without using engineered intermediate loss that is targeted only at the prediction performance. In the proposed framework, task optimization (submodular maximization) is made differentiable by introducing stochastic perturbations into deterministic algorithms (i.e., stochastic smoothing). We demonstrate the efficacy of the proposed framework using synthetic data. Experimental results of the mobile charging station routing problem show that the proposed framework can result in better routing decisions, e.g. the average number of UAVs recharged increases, compared to the prediction-optimization separate approach." @default.
- W4323322841 created "2023-03-07" @default.
- W4323322841 creator A5086188394 @default.
- W4323322841 creator A5088872677 @default.
- W4323322841 date "2023-03-02" @default.
- W4323322841 modified "2023-09-29" @default.
- W4323322841 title "Decision-Oriented Learning with Differentiable Submodular Maximization for Vehicle Routing Problem" @default.
- W4323322841 doi "https://doi.org/10.48550/arxiv.2303.01543" @default.
- W4323322841 hasPublicationYear "2023" @default.
- W4323322841 type Work @default.
- W4323322841 citedByCount "0" @default.
- W4323322841 crossrefType "posted-content" @default.
- W4323322841 hasAuthorship W4323322841A5086188394 @default.
- W4323322841 hasAuthorship W4323322841A5088872677 @default.
- W4323322841 hasBestOaLocation W43233228411 @default.
- W4323322841 hasConcept C11413529 @default.
- W4323322841 hasConcept C123784306 @default.
- W4323322841 hasConcept C126255220 @default.
- W4323322841 hasConcept C127413603 @default.
- W4323322841 hasConcept C134306372 @default.
- W4323322841 hasConcept C137836250 @default.
- W4323322841 hasConcept C14036430 @default.
- W4323322841 hasConcept C151730666 @default.
- W4323322841 hasConcept C154945302 @default.
- W4323322841 hasConcept C178621042 @default.
- W4323322841 hasConcept C201995342 @default.
- W4323322841 hasConcept C202615002 @default.
- W4323322841 hasConcept C2776330181 @default.
- W4323322841 hasConcept C2779343474 @default.
- W4323322841 hasConcept C2780451532 @default.
- W4323322841 hasConcept C31258907 @default.
- W4323322841 hasConcept C31972630 @default.
- W4323322841 hasConcept C33923547 @default.
- W4323322841 hasConcept C3770464 @default.
- W4323322841 hasConcept C41008148 @default.
- W4323322841 hasConcept C74172769 @default.
- W4323322841 hasConcept C78458016 @default.
- W4323322841 hasConcept C86803240 @default.
- W4323322841 hasConceptScore W4323322841C11413529 @default.
- W4323322841 hasConceptScore W4323322841C123784306 @default.
- W4323322841 hasConceptScore W4323322841C126255220 @default.
- W4323322841 hasConceptScore W4323322841C127413603 @default.
- W4323322841 hasConceptScore W4323322841C134306372 @default.
- W4323322841 hasConceptScore W4323322841C137836250 @default.
- W4323322841 hasConceptScore W4323322841C14036430 @default.
- W4323322841 hasConceptScore W4323322841C151730666 @default.
- W4323322841 hasConceptScore W4323322841C154945302 @default.
- W4323322841 hasConceptScore W4323322841C178621042 @default.
- W4323322841 hasConceptScore W4323322841C201995342 @default.
- W4323322841 hasConceptScore W4323322841C202615002 @default.
- W4323322841 hasConceptScore W4323322841C2776330181 @default.
- W4323322841 hasConceptScore W4323322841C2779343474 @default.
- W4323322841 hasConceptScore W4323322841C2780451532 @default.
- W4323322841 hasConceptScore W4323322841C31258907 @default.
- W4323322841 hasConceptScore W4323322841C31972630 @default.
- W4323322841 hasConceptScore W4323322841C33923547 @default.
- W4323322841 hasConceptScore W4323322841C3770464 @default.
- W4323322841 hasConceptScore W4323322841C41008148 @default.
- W4323322841 hasConceptScore W4323322841C74172769 @default.
- W4323322841 hasConceptScore W4323322841C78458016 @default.
- W4323322841 hasConceptScore W4323322841C86803240 @default.
- W4323322841 hasLocation W43233228411 @default.
- W4323322841 hasOpenAccess W4323322841 @default.
- W4323322841 hasPrimaryLocation W43233228411 @default.
- W4323322841 hasRelatedWork W2108249680 @default.
- W4323322841 hasRelatedWork W2246969754 @default.
- W4323322841 hasRelatedWork W2343732099 @default.
- W4323322841 hasRelatedWork W2949938480 @default.
- W4323322841 hasRelatedWork W2992148937 @default.
- W4323322841 hasRelatedWork W3012448563 @default.
- W4323322841 hasRelatedWork W3124980765 @default.
- W4323322841 hasRelatedWork W4206032745 @default.
- W4323322841 hasRelatedWork W4312614571 @default.
- W4323322841 hasRelatedWork W4377372140 @default.
- W4323322841 isParatext "false" @default.
- W4323322841 isRetracted "false" @default.
- W4323322841 workType "article" @default.