Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323338969> ?p ?o ?g. }
- W4323338969 endingPage "2702" @default.
- W4323338969 startingPage "2690" @default.
- W4323338969 abstract "With the continuous maturity of remote sensing technology, the obtained remote sensing images' quality and quantity have surpassed any previous period. In this context, the content-based remote sensing image retrieval (CBRSIR) task attracts a lot of attention and research interest. Nowadays, the previous CBRSIR works mainly face the following problems. First of all, few works can realize one to many cross-modal image retrieval task (such as using optical image to retrieve SAR, optical images at the same time); secondly, researches mainly focus on small-area, target-level retrieval, and few on semantic-level retrieval of the whole image; last but not the least, most of the existing networks are characterized by massive parameters and huge computing need, which cannot be applied to resource-constrained edge devices with power and storage limit. For the sake of alleviating these bottlenecks, the paper introduces a novel light-weighted non-local semantic fusion network based on hypergraph structure for CBRSIR (abbreviated as HGNLSF-Net). Specifically, in the framework, using the topological characteristics of hypergraph, the relationship among multiple nodes can be modeled, so as to understand the global features on remote sensing images better with fewer parameters and less computation. In addition, since the non-local semantics often involves a lot of noise, the hard-link module is constructed to filter noise. A series of experimental results on typical CBRSIR dataset, i.e., MMRSIRD well show that with fewer parameters, the proposed HGNLSF-Net outperforms other methods and achieves optimal retrieval performance." @default.
- W4323338969 created "2023-03-08" @default.
- W4323338969 creator A5006720439 @default.
- W4323338969 creator A5026001351 @default.
- W4323338969 creator A5030081363 @default.
- W4323338969 creator A5066623798 @default.
- W4323338969 creator A5071811991 @default.
- W4323338969 creator A5086418698 @default.
- W4323338969 creator A5089561905 @default.
- W4323338969 date "2023-01-01" @default.
- W4323338969 modified "2023-09-26" @default.
- W4323338969 title "A Light-Weighted Hypergraph Neural Network for Multimodal Remote Sensing Image Retrieval" @default.
- W4323338969 cites W1560922506 @default.
- W4323338969 cites W1987048533 @default.
- W4323338969 cites W1989889610 @default.
- W4323338969 cites W2095483845 @default.
- W4323338969 cites W2098738957 @default.
- W4323338969 cites W2105853573 @default.
- W4323338969 cites W2109506130 @default.
- W4323338969 cites W2111993661 @default.
- W4323338969 cites W2112008792 @default.
- W4323338969 cites W2115143036 @default.
- W4323338969 cites W2118187752 @default.
- W4323338969 cites W2120782420 @default.
- W4323338969 cites W2122317659 @default.
- W4323338969 cites W2123229215 @default.
- W4323338969 cites W2128956605 @default.
- W4323338969 cites W2130866627 @default.
- W4323338969 cites W2131846894 @default.
- W4323338969 cites W2151921806 @default.
- W4323338969 cites W2159966998 @default.
- W4323338969 cites W2161346036 @default.
- W4323338969 cites W2166492911 @default.
- W4323338969 cites W2169648929 @default.
- W4323338969 cites W2340690086 @default.
- W4323338969 cites W2412253299 @default.
- W4323338969 cites W2476125329 @default.
- W4323338969 cites W2515440612 @default.
- W4323338969 cites W2580615709 @default.
- W4323338969 cites W2584848220 @default.
- W4323338969 cites W2603566245 @default.
- W4323338969 cites W2610884537 @default.
- W4323338969 cites W2618373950 @default.
- W4323338969 cites W2626107033 @default.
- W4323338969 cites W2751825910 @default.
- W4323338969 cites W2752782242 @default.
- W4323338969 cites W2763822693 @default.
- W4323338969 cites W2766938848 @default.
- W4323338969 cites W2770250693 @default.
- W4323338969 cites W2777579947 @default.
- W4323338969 cites W2808376087 @default.
- W4323338969 cites W2883105896 @default.
- W4323338969 cites W2892880750 @default.
- W4323338969 cites W2913741863 @default.
- W4323338969 cites W2938495304 @default.
- W4323338969 cites W2942105743 @default.
- W4323338969 cites W2964157791 @default.
- W4323338969 cites W2966720510 @default.
- W4323338969 cites W2980061890 @default.
- W4323338969 cites W2993616601 @default.
- W4323338969 cites W2994112262 @default.
- W4323338969 cites W2997786074 @default.
- W4323338969 cites W3016406224 @default.
- W4323338969 cites W3043400139 @default.
- W4323338969 cites W3048795876 @default.
- W4323338969 cites W3083147600 @default.
- W4323338969 cites W3085990079 @default.
- W4323338969 cites W3090942365 @default.
- W4323338969 cites W3098774942 @default.
- W4323338969 cites W3104339543 @default.
- W4323338969 cites W3105409087 @default.
- W4323338969 cites W3105475654 @default.
- W4323338969 cites W3126408843 @default.
- W4323338969 cites W3132184743 @default.
- W4323338969 cites W3137228985 @default.
- W4323338969 cites W3140792177 @default.
- W4323338969 cites W3155496675 @default.
- W4323338969 cites W3165084071 @default.
- W4323338969 cites W4200468977 @default.
- W4323338969 cites W4285107185 @default.
- W4323338969 cites W4287367114 @default.
- W4323338969 cites W4296079303 @default.
- W4323338969 cites W4313229413 @default.
- W4323338969 doi "https://doi.org/10.1109/jstars.2023.3252670" @default.
- W4323338969 hasPublicationYear "2023" @default.
- W4323338969 type Work @default.
- W4323338969 citedByCount "0" @default.
- W4323338969 crossrefType "journal-article" @default.
- W4323338969 hasAuthorship W4323338969A5006720439 @default.
- W4323338969 hasAuthorship W4323338969A5026001351 @default.
- W4323338969 hasAuthorship W4323338969A5030081363 @default.
- W4323338969 hasAuthorship W4323338969A5066623798 @default.
- W4323338969 hasAuthorship W4323338969A5071811991 @default.
- W4323338969 hasAuthorship W4323338969A5086418698 @default.
- W4323338969 hasAuthorship W4323338969A5089561905 @default.
- W4323338969 hasBestOaLocation W43233389691 @default.
- W4323338969 hasConcept C106131492 @default.
- W4323338969 hasConcept C115961682 @default.