Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323345596> ?p ?o ?g. }
- W4323345596 endingPage "23281" @default.
- W4323345596 startingPage "23268" @default.
- W4323345596 abstract "Over the past few years, deep learning has been introduced to tackle hyperspectral image (HSI) classification and demonstrated good performance. In particular, the convolutional neural network (CNN) based methods have progressed. However, due to the high dimensionality of HSI and equal treatment of all bands, the performances of CNN based methods are hampered. The labels of land-covers often differ between edge and the center pixels in pixel-centered spatial information. These edge pixels may weaken the discrimination of spatial features and reduce classification accuracy. Motivated by the attention mechanism of the human visual system, the spatial proximity feature selection with residual spatial–spectral attention network is proposed in this article. It contains a residual spatial attention module, a residual spectral attention module, and a spatial proximity feature selection module. The residual spatial attention module aims to select the crucial spatial information, which assigns weights to different features by measuring the similarity between the surrounding elements and their central ones. The residual spectral attention module is designed for spectral bands which are selected from raw input data by emphasizing the valuable bands and suppressing the valueless. According to the spatial distribution of features, the spatial proximity feature selection module is used to filter features effectively. Experiments on three public data sets demonstrate that the proposed network outperforms the state-of-the-art methods in comparison." @default.
- W4323345596 created "2023-03-08" @default.
- W4323345596 creator A5017895484 @default.
- W4323345596 creator A5053468735 @default.
- W4323345596 date "2023-01-01" @default.
- W4323345596 modified "2023-10-01" @default.
- W4323345596 title "Spatial Proximity Feature Selection With Residual Spatial–Spectral Attention Network for Hyperspectral Image Classification" @default.
- W4323345596 cites W1521436688 @default.
- W4323345596 cites W1950365613 @default.
- W4323345596 cites W1966580635 @default.
- W4323345596 cites W2087263574 @default.
- W4323345596 cites W2106277226 @default.
- W4323345596 cites W2155658307 @default.
- W4323345596 cites W2169500530 @default.
- W4323345596 cites W2314785379 @default.
- W4323345596 cites W2318512420 @default.
- W4323345596 cites W2415341181 @default.
- W4323345596 cites W2500751094 @default.
- W4323345596 cites W2548791488 @default.
- W4323345596 cites W2550553598 @default.
- W4323345596 cites W2558098092 @default.
- W4323345596 cites W2600746131 @default.
- W4323345596 cites W2611655888 @default.
- W4323345596 cites W2613455596 @default.
- W4323345596 cites W2614326984 @default.
- W4323345596 cites W2625219738 @default.
- W4323345596 cites W2752782242 @default.
- W4323345596 cites W2757208835 @default.
- W4323345596 cites W2764276316 @default.
- W4323345596 cites W2765739551 @default.
- W4323345596 cites W2767340384 @default.
- W4323345596 cites W2767805377 @default.
- W4323345596 cites W2768975974 @default.
- W4323345596 cites W2782517596 @default.
- W4323345596 cites W2789643644 @default.
- W4323345596 cites W2792332881 @default.
- W4323345596 cites W2800371750 @default.
- W4323345596 cites W2821132480 @default.
- W4323345596 cites W2822065499 @default.
- W4323345596 cites W2884965832 @default.
- W4323345596 cites W2887785636 @default.
- W4323345596 cites W2890306271 @default.
- W4323345596 cites W2892302943 @default.
- W4323345596 cites W2899885135 @default.
- W4323345596 cites W2901424824 @default.
- W4323345596 cites W2903207713 @default.
- W4323345596 cites W2909491643 @default.
- W4323345596 cites W2914331134 @default.
- W4323345596 cites W2956367483 @default.
- W4323345596 cites W2963113244 @default.
- W4323345596 cites W2963495494 @default.
- W4323345596 cites W2963954913 @default.
- W4323345596 cites W2983255812 @default.
- W4323345596 cites W2984140474 @default.
- W4323345596 cites W3005379812 @default.
- W4323345596 cites W3022592629 @default.
- W4323345596 cites W3023527583 @default.
- W4323345596 cites W3026298314 @default.
- W4323345596 cites W3036589244 @default.
- W4323345596 cites W3039321110 @default.
- W4323345596 cites W3046220160 @default.
- W4323345596 cites W3084521418 @default.
- W4323345596 cites W3101012758 @default.
- W4323345596 cites W3110908156 @default.
- W4323345596 cites W3114720220 @default.
- W4323345596 cites W3117768529 @default.
- W4323345596 cites W3122028341 @default.
- W4323345596 cites W3125860323 @default.
- W4323345596 cites W3128036642 @default.
- W4323345596 cites W3130265010 @default.
- W4323345596 cites W3133055443 @default.
- W4323345596 cites W3137839916 @default.
- W4323345596 cites W3193242948 @default.
- W4323345596 cites W3207127663 @default.
- W4323345596 cites W3214821343 @default.
- W4323345596 cites W4206578920 @default.
- W4323345596 cites W4285207472 @default.
- W4323345596 cites W4285262969 @default.
- W4323345596 cites W4293733592 @default.
- W4323345596 doi "https://doi.org/10.1109/access.2023.3253627" @default.
- W4323345596 hasPublicationYear "2023" @default.
- W4323345596 type Work @default.
- W4323345596 citedByCount "0" @default.
- W4323345596 crossrefType "journal-article" @default.
- W4323345596 hasAuthorship W4323345596A5017895484 @default.
- W4323345596 hasAuthorship W4323345596A5053468735 @default.
- W4323345596 hasBestOaLocation W43233455961 @default.
- W4323345596 hasConcept C11413529 @default.
- W4323345596 hasConcept C138885662 @default.
- W4323345596 hasConcept C148483581 @default.
- W4323345596 hasConcept C153180895 @default.
- W4323345596 hasConcept C154945302 @default.
- W4323345596 hasConcept C155512373 @default.
- W4323345596 hasConcept C159078339 @default.
- W4323345596 hasConcept C159620131 @default.
- W4323345596 hasConcept C160633673 @default.
- W4323345596 hasConcept C205649164 @default.
- W4323345596 hasConcept C2776401178 @default.