Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323345612> ?p ?o ?g. }
- W4323345612 endingPage "12" @default.
- W4323345612 startingPage "1" @default.
- W4323345612 abstract "An effective health assessment guarantees the high accuracy of remaining useful life (RUL) prediction of machinery components. The key to health assessment is the health indicator of machinery components, which are generally constructed by feature fusion from the time and frequency domains in sensorial data. However, existing health indicator construction methods are constrained due to the low-sampling rate and the susceptibility to environmental disturbances of sensorial data. To draw these issues, this paper mainly proposes a health indicator construction method combining condensed image coding and a metrics-constrained deep learning model for improving the accuracy of RUL prediction. Firstly, to extract more information in time series under a low-sampling rate, a recurrence plot-grey (RP-G) image coding is extended from RP images to extract and fuse both the global and local dynamics at multiple scales in time series. Then, a nested residual-convolution autoencoder (NR-CAE) model is proposed to extract degradation-related information from RP-G images containing information disturbed by the environment. Finally, to build a more solid connection between the image-based features and the RUL prediction, a metric-constrained gated recurrent unit (MC-GRU) is proposed by considering characteristics related to RUL prediction and temporal relationships in RP-G image-based features. A commercial case of wind turbine gearboxes in Liaoning, China is investigated and demonstrates that the proposed method owns the ability to construct reliable health indicator of machinery components for accurate RUL prediction, using low-sampling sensorial data under environmental disturbances." @default.
- W4323345612 created "2023-03-08" @default.
- W4323345612 creator A5023760637 @default.
- W4323345612 creator A5026534062 @default.
- W4323345612 creator A5055529008 @default.
- W4323345612 creator A5075379587 @default.
- W4323345612 creator A5075939703 @default.
- W4323345612 date "2023-01-01" @default.
- W4323345612 modified "2023-09-29" @default.
- W4323345612 title "Health Assessment for RUL Prediction of Machinery Components Using Low-Sampling Temporal Signals: A Condensed Image Coding Approach" @default.
- W4323345612 cites W1975687401 @default.
- W4323345612 cites W2145446418 @default.
- W4323345612 cites W2286877141 @default.
- W4323345612 cites W2565591588 @default.
- W4323345612 cites W2596319557 @default.
- W4323345612 cites W2666784499 @default.
- W4323345612 cites W2750424462 @default.
- W4323345612 cites W2767586446 @default.
- W4323345612 cites W2768866948 @default.
- W4323345612 cites W2768988016 @default.
- W4323345612 cites W2770206312 @default.
- W4323345612 cites W2782550915 @default.
- W4323345612 cites W2789817813 @default.
- W4323345612 cites W2793783688 @default.
- W4323345612 cites W2799162308 @default.
- W4323345612 cites W2801752756 @default.
- W4323345612 cites W2896356240 @default.
- W4323345612 cites W2897197428 @default.
- W4323345612 cites W2900063678 @default.
- W4323345612 cites W2912803327 @default.
- W4323345612 cites W2914737654 @default.
- W4323345612 cites W2960714314 @default.
- W4323345612 cites W2964101377 @default.
- W4323345612 cites W2971524931 @default.
- W4323345612 cites W2980149757 @default.
- W4323345612 cites W2999406423 @default.
- W4323345612 cites W3009961868 @default.
- W4323345612 cites W3010246639 @default.
- W4323345612 cites W3015382364 @default.
- W4323345612 cites W3015596228 @default.
- W4323345612 cites W3017705806 @default.
- W4323345612 cites W3022112205 @default.
- W4323345612 cites W3037565425 @default.
- W4323345612 cites W3093699748 @default.
- W4323345612 cites W3111012757 @default.
- W4323345612 cites W3121605760 @default.
- W4323345612 cites W3129075289 @default.
- W4323345612 cites W3132329546 @default.
- W4323345612 cites W3133340673 @default.
- W4323345612 cites W3135012968 @default.
- W4323345612 cites W3136651874 @default.
- W4323345612 cites W3150223772 @default.
- W4323345612 cites W3156954244 @default.
- W4323345612 cites W3157956162 @default.
- W4323345612 cites W3168221103 @default.
- W4323345612 cites W3175219118 @default.
- W4323345612 cites W3184061371 @default.
- W4323345612 cites W3186181424 @default.
- W4323345612 cites W3189001320 @default.
- W4323345612 cites W3195901927 @default.
- W4323345612 cites W3196026889 @default.
- W4323345612 cites W3197807047 @default.
- W4323345612 cites W3207819750 @default.
- W4323345612 cites W3216628008 @default.
- W4323345612 cites W4200523324 @default.
- W4323345612 cites W4210815008 @default.
- W4323345612 cites W4214591409 @default.
- W4323345612 cites W4224280979 @default.
- W4323345612 cites W4225988782 @default.
- W4323345612 cites W4226373360 @default.
- W4323345612 cites W4281759545 @default.
- W4323345612 cites W4285138665 @default.
- W4323345612 cites W4290791568 @default.
- W4323345612 doi "https://doi.org/10.1109/tim.2023.3249224" @default.
- W4323345612 hasPublicationYear "2023" @default.
- W4323345612 type Work @default.
- W4323345612 citedByCount "0" @default.
- W4323345612 crossrefType "journal-article" @default.
- W4323345612 hasAuthorship W4323345612A5023760637 @default.
- W4323345612 hasAuthorship W4323345612A5026534062 @default.
- W4323345612 hasAuthorship W4323345612A5055529008 @default.
- W4323345612 hasAuthorship W4323345612A5075379587 @default.
- W4323345612 hasAuthorship W4323345612A5075939703 @default.
- W4323345612 hasConcept C105795698 @default.
- W4323345612 hasConcept C11413529 @default.
- W4323345612 hasConcept C124101348 @default.
- W4323345612 hasConcept C127413603 @default.
- W4323345612 hasConcept C153180895 @default.
- W4323345612 hasConcept C154945302 @default.
- W4323345612 hasConcept C155512373 @default.
- W4323345612 hasConcept C176217482 @default.
- W4323345612 hasConcept C179518139 @default.
- W4323345612 hasConcept C21547014 @default.
- W4323345612 hasConcept C2776247918 @default.
- W4323345612 hasConcept C33923547 @default.
- W4323345612 hasConcept C41008148 @default.
- W4323345612 hasConcept C52622490 @default.
- W4323345612 hasConcept C66938386 @default.