Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323520199> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4323520199 abstract "Question Generation (QG) is the task of generating questions from reference sentences and answers specified in the sentences. Intuitively, as one type of semantic representations, Abtract Meaning Representation (AMR) can be helpful for question generation by enforcing meaning preservation and handling data sparsity due to being abstracted from syntactic representations. However, little work has been done to leverage rich semantics in AMR for question generation. Therefore, we design AMR Question Generation (AMRQG) model to construct document-level AMR graphs from sentence-level AMR graphs. The model solves the alignment issue between nodes of AMR graph and words in sequence text at graph-level and node-level. To our knowledge, we are the first to leverage AMR representation into question generation for document-level input. Automatic evaluation results demonstrate that incorporating AMR as additional knowledge can significantly improve a sequence-to-sequence natural question generation model and show our model’s superiority." @default.
- W4323520199 created "2023-03-09" @default.
- W4323520199 creator A5010579187 @default.
- W4323520199 creator A5020993764 @default.
- W4323520199 creator A5029368027 @default.
- W4323520199 date "2022-12-23" @default.
- W4323520199 modified "2023-09-27" @default.
- W4323520199 title "Semantic Representation Based on AMR Graph for Document Level Question Generation" @default.
- W4323520199 cites W2133459682 @default.
- W4323520199 cites W2886402885 @default.
- W4323520199 cites W2889670144 @default.
- W4323520199 cites W2889787757 @default.
- W4323520199 cites W2890166583 @default.
- W4323520199 cites W2891946694 @default.
- W4323520199 cites W2911857455 @default.
- W4323520199 cites W2963627339 @default.
- W4323520199 cites W2997054320 @default.
- W4323520199 cites W3093354052 @default.
- W4323520199 cites W3117289850 @default.
- W4323520199 cites W3127162741 @default.
- W4323520199 cites W3156928032 @default.
- W4323520199 cites W3173677700 @default.
- W4323520199 cites W4205479723 @default.
- W4323520199 doi "https://doi.org/10.1145/3578741.3578762" @default.
- W4323520199 hasPublicationYear "2022" @default.
- W4323520199 type Work @default.
- W4323520199 citedByCount "0" @default.
- W4323520199 crossrefType "proceedings-article" @default.
- W4323520199 hasAuthorship W4323520199A5010579187 @default.
- W4323520199 hasAuthorship W4323520199A5020993764 @default.
- W4323520199 hasAuthorship W4323520199A5029368027 @default.
- W4323520199 hasConcept C132525143 @default.
- W4323520199 hasConcept C153083717 @default.
- W4323520199 hasConcept C154945302 @default.
- W4323520199 hasConcept C161301231 @default.
- W4323520199 hasConcept C184337299 @default.
- W4323520199 hasConcept C195324797 @default.
- W4323520199 hasConcept C199360897 @default.
- W4323520199 hasConcept C204321447 @default.
- W4323520199 hasConcept C23123220 @default.
- W4323520199 hasConcept C2776187449 @default.
- W4323520199 hasConcept C2777530160 @default.
- W4323520199 hasConcept C2985684807 @default.
- W4323520199 hasConcept C2987255567 @default.
- W4323520199 hasConcept C41008148 @default.
- W4323520199 hasConcept C80444323 @default.
- W4323520199 hasConceptScore W4323520199C132525143 @default.
- W4323520199 hasConceptScore W4323520199C153083717 @default.
- W4323520199 hasConceptScore W4323520199C154945302 @default.
- W4323520199 hasConceptScore W4323520199C161301231 @default.
- W4323520199 hasConceptScore W4323520199C184337299 @default.
- W4323520199 hasConceptScore W4323520199C195324797 @default.
- W4323520199 hasConceptScore W4323520199C199360897 @default.
- W4323520199 hasConceptScore W4323520199C204321447 @default.
- W4323520199 hasConceptScore W4323520199C23123220 @default.
- W4323520199 hasConceptScore W4323520199C2776187449 @default.
- W4323520199 hasConceptScore W4323520199C2777530160 @default.
- W4323520199 hasConceptScore W4323520199C2985684807 @default.
- W4323520199 hasConceptScore W4323520199C2987255567 @default.
- W4323520199 hasConceptScore W4323520199C41008148 @default.
- W4323520199 hasConceptScore W4323520199C80444323 @default.
- W4323520199 hasLocation W43235201991 @default.
- W4323520199 hasOpenAccess W4323520199 @default.
- W4323520199 hasPrimaryLocation W43235201991 @default.
- W4323520199 hasRelatedWork W152000175 @default.
- W4323520199 hasRelatedWork W2337676748 @default.
- W4323520199 hasRelatedWork W2401226416 @default.
- W4323520199 hasRelatedWork W2923818335 @default.
- W4323520199 hasRelatedWork W3171651191 @default.
- W4323520199 hasRelatedWork W4206939502 @default.
- W4323520199 hasRelatedWork W4288083289 @default.
- W4323520199 hasRelatedWork W4298134318 @default.
- W4323520199 hasRelatedWork W4309679315 @default.
- W4323520199 hasRelatedWork W3123567287 @default.
- W4323520199 isParatext "false" @default.
- W4323520199 isRetracted "false" @default.
- W4323520199 workType "article" @default.