Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323533164> ?p ?o ?g. }
- W4323533164 endingPage "77" @default.
- W4323533164 startingPage "62" @default.
- W4323533164 abstract "Nanoparticles have been used extensively in different scientific fields. Due to the possible destructive effects of nanoparticles on the environment or the biological systems, their toxicity evaluation is a crucial phase for studying nanomaterial safety. In the meantime, experimental approaches for toxicity assessment of various nanoparticles are expensive and time-consuming. Thus, an alternative technique, such as artificial intelligence (AI), could be valuable for predicting nanoparticle toxicity. Therefore, in this review, the AI tools were investigated for the toxicity assessment of nanomaterials. To this end, a systematic search was performed on PubMed, Web of Science, and Scopus databases. Articles were included or excluded based on pre-defined inclusion and exclusion criteria, and duplicate studies were excluded. Finally, twenty-six studies were included. The majority of the studies were conducted on metal oxide and metallic nanoparticles. In addition, Random Forest (RF) and Support Vector Machine (SVM) had the most frequency in the included studies. Most of the models demonstrated acceptable performance. Overall, AI could provide a robust, fast, and low-cost tool for the evaluation of nanoparticle toxicity." @default.
- W4323533164 created "2023-03-09" @default.
- W4323533164 creator A5015785975 @default.
- W4323533164 creator A5029158330 @default.
- W4323533164 creator A5046807092 @default.
- W4323533164 creator A5075544392 @default.
- W4323533164 creator A5088885700 @default.
- W4323533164 date "2023-01-02" @default.
- W4323533164 modified "2023-10-18" @default.
- W4323533164 title "Predicting the toxicity of nanoparticles using artificial intelligence tools: a systematic review" @default.
- W4323533164 cites W1981280267 @default.
- W4323533164 cites W1983865151 @default.
- W4323533164 cites W1998001113 @default.
- W4323533164 cites W2016864600 @default.
- W4323533164 cites W2022990556 @default.
- W4323533164 cites W2045481913 @default.
- W4323533164 cites W2055403964 @default.
- W4323533164 cites W2065379666 @default.
- W4323533164 cites W2073533442 @default.
- W4323533164 cites W2087812848 @default.
- W4323533164 cites W2106956101 @default.
- W4323533164 cites W2117326659 @default.
- W4323533164 cites W2128797123 @default.
- W4323533164 cites W2134135893 @default.
- W4323533164 cites W2150577353 @default.
- W4323533164 cites W2169542790 @default.
- W4323533164 cites W2170784159 @default.
- W4323533164 cites W2171596014 @default.
- W4323533164 cites W2202983172 @default.
- W4323533164 cites W2306570595 @default.
- W4323533164 cites W2343106452 @default.
- W4323533164 cites W2463318071 @default.
- W4323533164 cites W2522107642 @default.
- W4323533164 cites W2534639613 @default.
- W4323533164 cites W2560438049 @default.
- W4323533164 cites W2626089494 @default.
- W4323533164 cites W2742806160 @default.
- W4323533164 cites W2742822654 @default.
- W4323533164 cites W2759297174 @default.
- W4323533164 cites W2783137855 @default.
- W4323533164 cites W2790808809 @default.
- W4323533164 cites W2808106608 @default.
- W4323533164 cites W2808848745 @default.
- W4323533164 cites W2809120769 @default.
- W4323533164 cites W2889127019 @default.
- W4323533164 cites W2898397779 @default.
- W4323533164 cites W2916559661 @default.
- W4323533164 cites W2922240178 @default.
- W4323533164 cites W2944819716 @default.
- W4323533164 cites W2947856290 @default.
- W4323533164 cites W2950722229 @default.
- W4323533164 cites W2978379067 @default.
- W4323533164 cites W2980578413 @default.
- W4323533164 cites W2984432074 @default.
- W4323533164 cites W2984664792 @default.
- W4323533164 cites W2985066496 @default.
- W4323533164 cites W2990069931 @default.
- W4323533164 cites W2997480698 @default.
- W4323533164 cites W3002602479 @default.
- W4323533164 cites W3003650955 @default.
- W4323533164 cites W3004491110 @default.
- W4323533164 cites W3004779767 @default.
- W4323533164 cites W3008227503 @default.
- W4323533164 cites W3020128160 @default.
- W4323533164 cites W3033726977 @default.
- W4323533164 cites W3043938810 @default.
- W4323533164 cites W3092854853 @default.
- W4323533164 cites W3131143414 @default.
- W4323533164 cites W3156651800 @default.
- W4323533164 cites W3158275378 @default.
- W4323533164 cites W3163849331 @default.
- W4323533164 cites W3164483271 @default.
- W4323533164 cites W3212089976 @default.
- W4323533164 cites W3214446650 @default.
- W4323533164 cites W4206165379 @default.
- W4323533164 cites W4224318746 @default.
- W4323533164 cites W4251513978 @default.
- W4323533164 cites W4255712908 @default.
- W4323533164 cites W4280565988 @default.
- W4323533164 cites W4294215472 @default.
- W4323533164 doi "https://doi.org/10.1080/17435390.2023.2186279" @default.
- W4323533164 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36883698" @default.
- W4323533164 hasPublicationYear "2023" @default.
- W4323533164 type Work @default.
- W4323533164 citedByCount "1" @default.
- W4323533164 crossrefType "journal-article" @default.
- W4323533164 hasAuthorship W4323533164A5015785975 @default.
- W4323533164 hasAuthorship W4323533164A5029158330 @default.
- W4323533164 hasAuthorship W4323533164A5046807092 @default.
- W4323533164 hasAuthorship W4323533164A5075544392 @default.
- W4323533164 hasAuthorship W4323533164A5088885700 @default.
- W4323533164 hasConcept C12267149 @default.
- W4323533164 hasConcept C154945302 @default.
- W4323533164 hasConcept C155672457 @default.
- W4323533164 hasConcept C171250308 @default.
- W4323533164 hasConcept C178790620 @default.
- W4323533164 hasConcept C185592680 @default.
- W4323533164 hasConcept C192562407 @default.