Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323543436> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4323543436 endingPage "101208" @default.
- W4323543436 startingPage "101208" @default.
- W4323543436 abstract "Keratoconus is a non-inflammatory corneal condition affecting both eyes and is present in one out of every 2,000 people worldwide. The cornea deforms into a conical shape and thins, resulting in high-order aberrations and gradual vision loss. Risk factor analysis in the degradation of keratoconus is under-researched. This research work investigates and uses effective machine learning models to gain insight. into how much the risk factors of a patient contribute towards the progressive stages of keratoconus, as well as how significant these factors are in the creation of an accurate prediction model. This research demonstrates the value of machine learning approaches on a clinical dataset. This research paper employs several machine learning algorithms to classify the patients' stage of keratoconus using clinical information, such as measurements of the cornea's topography, elevation, and pachymetry taken using pentacam equipment at Sydney's Vision Eye Institute Chatswood. Eight different machine learning techniques were investigated over three variations of a dataset and achieved an average accuracy of 68, 80, and 90% for the risk factor, pentacam, and cumulative datasets, respectively. The results show a significant increase in accuracy and a 97% increase in AUC upon the addition of risk factor data compared to the models trained on pentacam data alone. The machine learning methods shown in this paper outperform those in current research. This research highlights the importance of machine learning methods and risk factor data in the diagnosis of keratoconus and highlights the patient's primary optical aid as the strongest risk factor. The goal of this research is to support the work of ophthalmologists in diagnosing keratoconus and providing better care for the patient." @default.
- W4323543436 created "2023-03-09" @default.
- W4323543436 creator A5011883455 @default.
- W4323543436 creator A5014938374 @default.
- W4323543436 creator A5022934546 @default.
- W4323543436 creator A5053776267 @default.
- W4323543436 creator A5063632288 @default.
- W4323543436 creator A5070246091 @default.
- W4323543436 date "2023-01-01" @default.
- W4323543436 modified "2023-09-26" @default.
- W4323543436 title "An innovative approach based on machine learning to evaluate the risk factors importance in diagnosing keratoconus" @default.
- W4323543436 cites W1852157430 @default.
- W4323543436 cites W1854772198 @default.
- W4323543436 cites W1978559313 @default.
- W4323543436 cites W1991557362 @default.
- W4323543436 cites W1999108376 @default.
- W4323543436 cites W2006997475 @default.
- W4323543436 cites W2012316328 @default.
- W4323543436 cites W2023341433 @default.
- W4323543436 cites W2024206877 @default.
- W4323543436 cites W2035394144 @default.
- W4323543436 cites W2046873918 @default.
- W4323543436 cites W2058727211 @default.
- W4323543436 cites W2084342518 @default.
- W4323543436 cites W2100578083 @default.
- W4323543436 cites W2120992944 @default.
- W4323543436 cites W2129358156 @default.
- W4323543436 cites W2145122226 @default.
- W4323543436 cites W2160998061 @default.
- W4323543436 cites W2170466279 @default.
- W4323543436 cites W2512324722 @default.
- W4323543436 cites W2550848908 @default.
- W4323543436 cites W2897825694 @default.
- W4323543436 cites W2900083515 @default.
- W4323543436 cites W2942329488 @default.
- W4323543436 cites W2976054229 @default.
- W4323543436 cites W2982580298 @default.
- W4323543436 cites W3028858290 @default.
- W4323543436 cites W3204220678 @default.
- W4323543436 cites W3207718504 @default.
- W4323543436 cites W4200422062 @default.
- W4323543436 cites W4210991337 @default.
- W4323543436 cites W4220814249 @default.
- W4323543436 cites W4224241667 @default.
- W4323543436 doi "https://doi.org/10.1016/j.imu.2023.101208" @default.
- W4323543436 hasPublicationYear "2023" @default.
- W4323543436 type Work @default.
- W4323543436 citedByCount "1" @default.
- W4323543436 countsByYear W43235434362023 @default.
- W4323543436 crossrefType "journal-article" @default.
- W4323543436 hasAuthorship W4323543436A5011883455 @default.
- W4323543436 hasAuthorship W4323543436A5014938374 @default.
- W4323543436 hasAuthorship W4323543436A5022934546 @default.
- W4323543436 hasAuthorship W4323543436A5053776267 @default.
- W4323543436 hasAuthorship W4323543436A5063632288 @default.
- W4323543436 hasAuthorship W4323543436A5070246091 @default.
- W4323543436 hasBestOaLocation W43235434361 @default.
- W4323543436 hasConcept C118487528 @default.
- W4323543436 hasConcept C119767625 @default.
- W4323543436 hasConcept C119857082 @default.
- W4323543436 hasConcept C126322002 @default.
- W4323543436 hasConcept C154945302 @default.
- W4323543436 hasConcept C2776882836 @default.
- W4323543436 hasConcept C2778918178 @default.
- W4323543436 hasConcept C41008148 @default.
- W4323543436 hasConcept C50440223 @default.
- W4323543436 hasConcept C71924100 @default.
- W4323543436 hasConceptScore W4323543436C118487528 @default.
- W4323543436 hasConceptScore W4323543436C119767625 @default.
- W4323543436 hasConceptScore W4323543436C119857082 @default.
- W4323543436 hasConceptScore W4323543436C126322002 @default.
- W4323543436 hasConceptScore W4323543436C154945302 @default.
- W4323543436 hasConceptScore W4323543436C2776882836 @default.
- W4323543436 hasConceptScore W4323543436C2778918178 @default.
- W4323543436 hasConceptScore W4323543436C41008148 @default.
- W4323543436 hasConceptScore W4323543436C50440223 @default.
- W4323543436 hasConceptScore W4323543436C71924100 @default.
- W4323543436 hasFunder F4320310106 @default.
- W4323543436 hasLocation W43235434361 @default.
- W4323543436 hasOpenAccess W4323543436 @default.
- W4323543436 hasPrimaryLocation W43235434361 @default.
- W4323543436 hasRelatedWork W2052551923 @default.
- W4323543436 hasRelatedWork W2100309323 @default.
- W4323543436 hasRelatedWork W2121812418 @default.
- W4323543436 hasRelatedWork W2136523923 @default.
- W4323543436 hasRelatedWork W2165803650 @default.
- W4323543436 hasRelatedWork W2399813451 @default.
- W4323543436 hasRelatedWork W2945543346 @default.
- W4323543436 hasRelatedWork W2965367095 @default.
- W4323543436 hasRelatedWork W2987671264 @default.
- W4323543436 hasRelatedWork W4376642258 @default.
- W4323543436 hasVolume "38" @default.
- W4323543436 isParatext "false" @default.
- W4323543436 isRetracted "false" @default.
- W4323543436 workType "article" @default.