Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323565555> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4323565555 endingPage "376" @default.
- W4323565555 startingPage "376" @default.
- W4323565555 abstract "A new machine learning approach was developed to predict the quantity of mine waste rock drainage using weather data as the inputs. The novelty of the approach is that it includes spring freshet (melting of snow/ice in spring) as an input to the drainage flow rate model. Specifically, the machine learning approach integrates the decision tree algorithm to classify the occurrence or absence of spring freshet and a long short-term memory (LSTM) algorithm to predict the flow rate of mine waste rock drainage. The two algorithms are integrated by using the classification result of spring freshet as an input to the flow rate model. The machine learning approach developed was applied to predict the drainage flow rate at a case study mine in Canada. The model developed was trained with the local weather data as the inputs and the historical monitoring data of drainage flow rate as the target (output). The results show that the decision tree algorithm is able to classify the occurrence or absence of spring freshet with an accuracy of 91%. The inclusion of spring freshet as an input to the flow rate model significantly improves the performance of the flow rate model. The sensitivity tests show that changes in temperature and atmospheric precipitation influence the drainage flow rate." @default.
- W4323565555 created "2023-03-09" @default.
- W4323565555 creator A5024460487 @default.
- W4323565555 creator A5043273656 @default.
- W4323565555 creator A5089171411 @default.
- W4323565555 date "2023-03-08" @default.
- W4323565555 modified "2023-09-30" @default.
- W4323565555 title "A Machine Learning Approach for Prediction of the Quantity of Mine Waste Rock Drainage in Areas with Spring Freshet" @default.
- W4323565555 cites W1536215266 @default.
- W4323565555 cites W1619164700 @default.
- W4323565555 cites W1978784821 @default.
- W4323565555 cites W1982504695 @default.
- W4323565555 cites W1992359062 @default.
- W4323565555 cites W1995895046 @default.
- W4323565555 cites W1998490326 @default.
- W4323565555 cites W2002651252 @default.
- W4323565555 cites W2010611103 @default.
- W4323565555 cites W2022216942 @default.
- W4323565555 cites W2024684535 @default.
- W4323565555 cites W2039463669 @default.
- W4323565555 cites W2059935589 @default.
- W4323565555 cites W2064675550 @default.
- W4323565555 cites W2077238186 @default.
- W4323565555 cites W2082318860 @default.
- W4323565555 cites W2103082150 @default.
- W4323565555 cites W2186080948 @default.
- W4323565555 cites W222388946 @default.
- W4323565555 cites W2257176949 @default.
- W4323565555 cites W2807918673 @default.
- W4323565555 cites W2903975031 @default.
- W4323565555 cites W3016987998 @default.
- W4323565555 cites W3070122999 @default.
- W4323565555 cites W3089482699 @default.
- W4323565555 cites W3135507208 @default.
- W4323565555 cites W3216390777 @default.
- W4323565555 doi "https://doi.org/10.3390/min13030376" @default.
- W4323565555 hasPublicationYear "2023" @default.
- W4323565555 type Work @default.
- W4323565555 citedByCount "0" @default.
- W4323565555 crossrefType "journal-article" @default.
- W4323565555 hasAuthorship W4323565555A5024460487 @default.
- W4323565555 hasAuthorship W4323565555A5043273656 @default.
- W4323565555 hasAuthorship W4323565555A5089171411 @default.
- W4323565555 hasBestOaLocation W43235655551 @default.
- W4323565555 hasConcept C119857082 @default.
- W4323565555 hasConcept C127313418 @default.
- W4323565555 hasConcept C127413603 @default.
- W4323565555 hasConcept C154945302 @default.
- W4323565555 hasConcept C187320778 @default.
- W4323565555 hasConcept C18903297 @default.
- W4323565555 hasConcept C2778712887 @default.
- W4323565555 hasConcept C41008148 @default.
- W4323565555 hasConcept C67592535 @default.
- W4323565555 hasConcept C76886044 @default.
- W4323565555 hasConcept C78519656 @default.
- W4323565555 hasConcept C84525736 @default.
- W4323565555 hasConcept C86803240 @default.
- W4323565555 hasConceptScore W4323565555C119857082 @default.
- W4323565555 hasConceptScore W4323565555C127313418 @default.
- W4323565555 hasConceptScore W4323565555C127413603 @default.
- W4323565555 hasConceptScore W4323565555C154945302 @default.
- W4323565555 hasConceptScore W4323565555C187320778 @default.
- W4323565555 hasConceptScore W4323565555C18903297 @default.
- W4323565555 hasConceptScore W4323565555C2778712887 @default.
- W4323565555 hasConceptScore W4323565555C41008148 @default.
- W4323565555 hasConceptScore W4323565555C67592535 @default.
- W4323565555 hasConceptScore W4323565555C76886044 @default.
- W4323565555 hasConceptScore W4323565555C78519656 @default.
- W4323565555 hasConceptScore W4323565555C84525736 @default.
- W4323565555 hasConceptScore W4323565555C86803240 @default.
- W4323565555 hasIssue "3" @default.
- W4323565555 hasLocation W43235655551 @default.
- W4323565555 hasOpenAccess W4323565555 @default.
- W4323565555 hasPrimaryLocation W43235655551 @default.
- W4323565555 hasRelatedWork W1470425429 @default.
- W4323565555 hasRelatedWork W2940336242 @default.
- W4323565555 hasRelatedWork W3127425528 @default.
- W4323565555 hasRelatedWork W4205478082 @default.
- W4323565555 hasRelatedWork W4281385048 @default.
- W4323565555 hasRelatedWork W4308191010 @default.
- W4323565555 hasRelatedWork W4313001487 @default.
- W4323565555 hasRelatedWork W4318350883 @default.
- W4323565555 hasRelatedWork W4328134586 @default.
- W4323565555 hasRelatedWork W4361795583 @default.
- W4323565555 hasVolume "13" @default.
- W4323565555 isParatext "false" @default.
- W4323565555 isRetracted "false" @default.
- W4323565555 workType "article" @default.