Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323642627> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4323642627 endingPage "100" @default.
- W4323642627 startingPage "95" @default.
- W4323642627 abstract "Recently, numerous attempts have been devoted to applying deep-learning-based super resolution to medical images. However, discussions on its usefulness have been limited to the use of indices such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), and the significance of its application has not been widely discussed. This study aimed to compare several deep learning (DL) —based super-resolution methods using publicly available brain magnetic resonance imaging datasets. The impact of training the segmentation models on super-resolved images was also investigated. The results demonstrated the superiority of the DL-based model over traditional image interpolation methods and the limitations of its application in medical imaging. Additionally, the results indicated that PSNR and SSIM might not always be suitable as evaluation indices." @default.
- W4323642627 created "2023-03-10" @default.
- W4323642627 creator A5028788705 @default.
- W4323642627 creator A5030280493 @default.
- W4323642627 creator A5070107777 @default.
- W4323642627 creator A5081892303 @default.
- W4323642627 creator A5090819421 @default.
- W4323642627 date "2022-01-01" @default.
- W4323642627 modified "2023-10-05" @default.
- W4323642627 title "Effect of Super Resolution on Low-Resolution MRI Segmentation" @default.
- W4323642627 cites W1885185971 @default.
- W4323642627 cites W1901129140 @default.
- W4323642627 cites W2194775991 @default.
- W4323642627 cites W2613456556 @default.
- W4323642627 cites W2709402577 @default.
- W4323642627 cites W2794977498 @default.
- W4323642627 cites W2963372104 @default.
- W4323642627 cites W2963470893 @default.
- W4323642627 cites W2964227007 @default.
- W4323642627 cites W3069245681 @default.
- W4323642627 cites W3098848838 @default.
- W4323642627 cites W3102952204 @default.
- W4323642627 cites W3123982987 @default.
- W4323642627 cites W3217617289 @default.
- W4323642627 doi "https://doi.org/10.17264/stmarieng.13.95" @default.
- W4323642627 hasPublicationYear "2022" @default.
- W4323642627 type Work @default.
- W4323642627 citedByCount "0" @default.
- W4323642627 crossrefType "journal-article" @default.
- W4323642627 hasAuthorship W4323642627A5028788705 @default.
- W4323642627 hasAuthorship W4323642627A5030280493 @default.
- W4323642627 hasAuthorship W4323642627A5070107777 @default.
- W4323642627 hasAuthorship W4323642627A5081892303 @default.
- W4323642627 hasAuthorship W4323642627A5090819421 @default.
- W4323642627 hasBestOaLocation W43236426271 @default.
- W4323642627 hasConcept C103278499 @default.
- W4323642627 hasConcept C108583219 @default.
- W4323642627 hasConcept C115961682 @default.
- W4323642627 hasConcept C126838900 @default.
- W4323642627 hasConcept C137800194 @default.
- W4323642627 hasConcept C138268822 @default.
- W4323642627 hasConcept C141239990 @default.
- W4323642627 hasConcept C143409427 @default.
- W4323642627 hasConcept C153180895 @default.
- W4323642627 hasConcept C154579607 @default.
- W4323642627 hasConcept C154945302 @default.
- W4323642627 hasConcept C205372480 @default.
- W4323642627 hasConcept C205649164 @default.
- W4323642627 hasConcept C3019883945 @default.
- W4323642627 hasConcept C3020199158 @default.
- W4323642627 hasConcept C31601959 @default.
- W4323642627 hasConcept C31972630 @default.
- W4323642627 hasConcept C41008148 @default.
- W4323642627 hasConcept C62649853 @default.
- W4323642627 hasConcept C71924100 @default.
- W4323642627 hasConcept C89600930 @default.
- W4323642627 hasConceptScore W4323642627C103278499 @default.
- W4323642627 hasConceptScore W4323642627C108583219 @default.
- W4323642627 hasConceptScore W4323642627C115961682 @default.
- W4323642627 hasConceptScore W4323642627C126838900 @default.
- W4323642627 hasConceptScore W4323642627C137800194 @default.
- W4323642627 hasConceptScore W4323642627C138268822 @default.
- W4323642627 hasConceptScore W4323642627C141239990 @default.
- W4323642627 hasConceptScore W4323642627C143409427 @default.
- W4323642627 hasConceptScore W4323642627C153180895 @default.
- W4323642627 hasConceptScore W4323642627C154579607 @default.
- W4323642627 hasConceptScore W4323642627C154945302 @default.
- W4323642627 hasConceptScore W4323642627C205372480 @default.
- W4323642627 hasConceptScore W4323642627C205649164 @default.
- W4323642627 hasConceptScore W4323642627C3019883945 @default.
- W4323642627 hasConceptScore W4323642627C3020199158 @default.
- W4323642627 hasConceptScore W4323642627C31601959 @default.
- W4323642627 hasConceptScore W4323642627C31972630 @default.
- W4323642627 hasConceptScore W4323642627C41008148 @default.
- W4323642627 hasConceptScore W4323642627C62649853 @default.
- W4323642627 hasConceptScore W4323642627C71924100 @default.
- W4323642627 hasConceptScore W4323642627C89600930 @default.
- W4323642627 hasIssue "2" @default.
- W4323642627 hasLocation W43236426271 @default.
- W4323642627 hasOpenAccess W4323642627 @default.
- W4323642627 hasPrimaryLocation W43236426271 @default.
- W4323642627 hasRelatedWork W1970848816 @default.
- W4323642627 hasRelatedWork W2080602228 @default.
- W4323642627 hasRelatedWork W2088649237 @default.
- W4323642627 hasRelatedWork W2116847410 @default.
- W4323642627 hasRelatedWork W2280716820 @default.
- W4323642627 hasRelatedWork W2380973289 @default.
- W4323642627 hasRelatedWork W2900689274 @default.
- W4323642627 hasRelatedWork W3097784260 @default.
- W4323642627 hasRelatedWork W4200550458 @default.
- W4323642627 hasRelatedWork W2188213139 @default.
- W4323642627 hasVolume "13" @default.
- W4323642627 isParatext "false" @default.
- W4323642627 isRetracted "false" @default.
- W4323642627 workType "article" @default.