Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323642716> ?p ?o ?g. }
- W4323642716 endingPage "46" @default.
- W4323642716 startingPage "32" @default.
- W4323642716 abstract "Background: Exocrine pancreatic insufficiency (EPI) is a serious condition characterized by a lack of functional exocrine pancreatic enzymes and the resultant inability to properly digest nutrients. EPI can be caused by a variety of disorders, including chronic pancreatitis, pancreatic cancer, and celiac disease. EPI remains underdiagnosed because of the nonspecific nature of clinical symptoms, lack of an ideal diagnostic test, and the inability to easily identify affected patients using administrative claims data. Objectives: To develop a machine learning model that identifies patients in a commercial medical claims database who likely have EPI but are undiagnosed. Methods: A machine learning algorithm was developed in Scikit-learn, a Python module. The study population, selected from the 2014 Truven MarketScan® Commercial Claims Database, consisted of patients with EPI-prone conditions. Patients were labeled with 290 condition category flags and split into actual positive EPI cases, actual negative EPI cases, and unlabeled cases. The study population was then randomly divided into a training subset and a testing subset. The training subset was used to determine the performance metrics of 27 models and to select the highest performing model, and the testing subset was used to evaluate performance of the best machine learning model. Results: The study population consisted of 2088 actual positive EPI cases, 1077 actual negative EPI cases, and 437 530 unlabeled cases. In the best performing model, the precision, recall, and accuracy were 0.91, 0.80, and 0.86, respectively. The best-performing model estimated that the number of patients likely to have EPI was about 12 times the number of patients directly identified as EPI-positive through a claims analysis in the study population. The most important features in assigning EPI probability were the presence or absence of diagnosis codes related to pancreatic and digestive conditions. Conclusions: Machine learning techniques demonstrated high predictive power in identifying patients with EPI and could facilitate an enhanced understanding of its etiology and help to identify patients for possible diagnosis and treatment." @default.
- W4323642716 created "2023-03-10" @default.
- W4323642716 creator A5014245594 @default.
- W4323642716 creator A5015971889 @default.
- W4323642716 creator A5016264453 @default.
- W4323642716 creator A5017014983 @default.
- W4323642716 creator A5025033024 @default.
- W4323642716 creator A5025731296 @default.
- W4323642716 creator A5055880377 @default.
- W4323642716 creator A5077078620 @default.
- W4323642716 date "2019-02-14" @default.
- W4323642716 modified "2023-09-28" @default.
- W4323642716 title "Applying Machine Learning Techniques to Identify Undiagnosed Patients with Exocrine Pancreatic Insufficiency" @default.
- W4323642716 cites W170714584 @default.
- W4323642716 cites W1880459926 @default.
- W4323642716 cites W1993122603 @default.
- W4323642716 cites W2045572961 @default.
- W4323642716 cites W2064059887 @default.
- W4323642716 cites W2077083610 @default.
- W4323642716 cites W2088918824 @default.
- W4323642716 cites W2111547563 @default.
- W4323642716 cites W2117093474 @default.
- W4323642716 cites W2120825136 @default.
- W4323642716 cites W2135046866 @default.
- W4323642716 cites W2161673710 @default.
- W4323642716 cites W2167565084 @default.
- W4323642716 cites W2341052126 @default.
- W4323642716 cites W2468477102 @default.
- W4323642716 cites W2509317458 @default.
- W4323642716 cites W2509730946 @default.
- W4323642716 cites W2560554401 @default.
- W4323642716 cites W2569214105 @default.
- W4323642716 cites W2575280030 @default.
- W4323642716 cites W2584373275 @default.
- W4323642716 cites W2587106090 @default.
- W4323642716 cites W2587298075 @default.
- W4323642716 cites W2606184753 @default.
- W4323642716 cites W2612292012 @default.
- W4323642716 cites W2624775565 @default.
- W4323642716 cites W2655824372 @default.
- W4323642716 cites W2729540173 @default.
- W4323642716 cites W2732050589 @default.
- W4323642716 cites W2734118236 @default.
- W4323642716 cites W2735368442 @default.
- W4323642716 cites W4324262949 @default.
- W4323642716 doi "https://doi.org/10.36469/jheor.2019.9727" @default.
- W4323642716 hasPublicationYear "2019" @default.
- W4323642716 type Work @default.
- W4323642716 citedByCount "0" @default.
- W4323642716 crossrefType "journal-article" @default.
- W4323642716 hasAuthorship W4323642716A5014245594 @default.
- W4323642716 hasAuthorship W4323642716A5015971889 @default.
- W4323642716 hasAuthorship W4323642716A5016264453 @default.
- W4323642716 hasAuthorship W4323642716A5017014983 @default.
- W4323642716 hasAuthorship W4323642716A5025033024 @default.
- W4323642716 hasAuthorship W4323642716A5025731296 @default.
- W4323642716 hasAuthorship W4323642716A5055880377 @default.
- W4323642716 hasAuthorship W4323642716A5077078620 @default.
- W4323642716 hasBestOaLocation W43236427161 @default.
- W4323642716 hasConcept C111919701 @default.
- W4323642716 hasConcept C119857082 @default.
- W4323642716 hasConcept C121608353 @default.
- W4323642716 hasConcept C126322002 @default.
- W4323642716 hasConcept C154945302 @default.
- W4323642716 hasConcept C2775967933 @default.
- W4323642716 hasConcept C2777152358 @default.
- W4323642716 hasConcept C2780210213 @default.
- W4323642716 hasConcept C2908647359 @default.
- W4323642716 hasConcept C41008148 @default.
- W4323642716 hasConcept C519991488 @default.
- W4323642716 hasConcept C71924100 @default.
- W4323642716 hasConcept C99454951 @default.
- W4323642716 hasConceptScore W4323642716C111919701 @default.
- W4323642716 hasConceptScore W4323642716C119857082 @default.
- W4323642716 hasConceptScore W4323642716C121608353 @default.
- W4323642716 hasConceptScore W4323642716C126322002 @default.
- W4323642716 hasConceptScore W4323642716C154945302 @default.
- W4323642716 hasConceptScore W4323642716C2775967933 @default.
- W4323642716 hasConceptScore W4323642716C2777152358 @default.
- W4323642716 hasConceptScore W4323642716C2780210213 @default.
- W4323642716 hasConceptScore W4323642716C2908647359 @default.
- W4323642716 hasConceptScore W4323642716C41008148 @default.
- W4323642716 hasConceptScore W4323642716C519991488 @default.
- W4323642716 hasConceptScore W4323642716C71924100 @default.
- W4323642716 hasConceptScore W4323642716C99454951 @default.
- W4323642716 hasLocation W43236427161 @default.
- W4323642716 hasOpenAccess W4323642716 @default.
- W4323642716 hasPrimaryLocation W43236427161 @default.
- W4323642716 hasRelatedWork W2278976545 @default.
- W4323642716 hasRelatedWork W2388396168 @default.
- W4323642716 hasRelatedWork W2891993883 @default.
- W4323642716 hasRelatedWork W2909369566 @default.
- W4323642716 hasRelatedWork W3047820373 @default.
- W4323642716 hasRelatedWork W3048355326 @default.
- W4323642716 hasRelatedWork W4285815787 @default.
- W4323642716 hasRelatedWork W4312949351 @default.
- W4323642716 hasRelatedWork W814239660 @default.
- W4323642716 hasRelatedWork W2549167368 @default.