Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323643744> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4323643744 endingPage "161" @default.
- W4323643744 startingPage "147" @default.
- W4323643744 abstract "The facility location problems (FLPs) are a typical class of NP-hard combinatorial optimization problems, which are widely seen in the supply chain and logistics. Many mathematical and heuristic algorithms have been developed for optimizing the FLP. In addition to the transportation cost, there are usually multiple conflicting objectives in realistic applications. It is therefore desirable to design algorithms that approximate a set of Pareto solutions efficiently without enormous search cost. In this paper, we consider the multi-objective facility location problem (MO-FLP) that simultaneously minimizes the overall cost and maximizes the system reliability. We develop a learning-based approach to predicting the distribution probability of the entire Pareto set for a given problem. To this end, the MO-FLP is modeled as a bipartite graph optimization problem and two graph neural networks are constructed to learn the implicit graph representation on nodes and edges. The network outputs are then converted into the probability distribution of the Pareto set, from which a set of non-dominated solutions can be sampled non-autoregressively. Experimental results on MO-FLP instances of different scales show that the proposed approach achieves a comparable performance to a widely used multi-objective evolutionary algorithm in terms of the solution quality while significantly reducing the computational cost for search." @default.
- W4323643744 created "2023-03-10" @default.
- W4323643744 creator A5000979050 @default.
- W4323643744 creator A5032314861 @default.
- W4323643744 creator A5037394752 @default.
- W4323643744 date "2023-01-01" @default.
- W4323643744 modified "2023-10-03" @default.
- W4323643744 title "End-to-End Pareto Set Prediction with Graph Neural Networks for Multi-objective Facility Location" @default.
- W4323643744 cites W2012451526 @default.
- W4323643744 cites W2116341502 @default.
- W4323643744 cites W2126105956 @default.
- W4323643744 cites W2143381319 @default.
- W4323643744 cites W2166681504 @default.
- W4323643744 cites W2343601797 @default.
- W4323643744 cites W2558460151 @default.
- W4323643744 cites W2885015755 @default.
- W4323643744 cites W2895243640 @default.
- W4323643744 cites W2943605315 @default.
- W4323643744 cites W2963084622 @default.
- W4323643744 cites W2964242853 @default.
- W4323643744 cites W2985331920 @default.
- W4323643744 cites W3027146252 @default.
- W4323643744 cites W3047863327 @default.
- W4323643744 cites W3080644389 @default.
- W4323643744 cites W3152893301 @default.
- W4323643744 cites W3188522200 @default.
- W4323643744 cites W4210257598 @default.
- W4323643744 cites W4245982153 @default.
- W4323643744 cites W761297306 @default.
- W4323643744 cites W86242020 @default.
- W4323643744 doi "https://doi.org/10.1007/978-3-031-27250-9_11" @default.
- W4323643744 hasPublicationYear "2023" @default.
- W4323643744 type Work @default.
- W4323643744 citedByCount "3" @default.
- W4323643744 countsByYear W43236437442023 @default.
- W4323643744 crossrefType "book-chapter" @default.
- W4323643744 hasAuthorship W4323643744A5000979050 @default.
- W4323643744 hasAuthorship W4323643744A5032314861 @default.
- W4323643744 hasAuthorship W4323643744A5037394752 @default.
- W4323643744 hasBestOaLocation W43236437442 @default.
- W4323643744 hasConcept C108005400 @default.
- W4323643744 hasConcept C126255220 @default.
- W4323643744 hasConcept C132525143 @default.
- W4323643744 hasConcept C137635306 @default.
- W4323643744 hasConcept C154945302 @default.
- W4323643744 hasConcept C173801870 @default.
- W4323643744 hasConcept C177264268 @default.
- W4323643744 hasConcept C197657726 @default.
- W4323643744 hasConcept C199360897 @default.
- W4323643744 hasConcept C33923547 @default.
- W4323643744 hasConcept C41008148 @default.
- W4323643744 hasConcept C80444323 @default.
- W4323643744 hasConceptScore W4323643744C108005400 @default.
- W4323643744 hasConceptScore W4323643744C126255220 @default.
- W4323643744 hasConceptScore W4323643744C132525143 @default.
- W4323643744 hasConceptScore W4323643744C137635306 @default.
- W4323643744 hasConceptScore W4323643744C154945302 @default.
- W4323643744 hasConceptScore W4323643744C173801870 @default.
- W4323643744 hasConceptScore W4323643744C177264268 @default.
- W4323643744 hasConceptScore W4323643744C197657726 @default.
- W4323643744 hasConceptScore W4323643744C199360897 @default.
- W4323643744 hasConceptScore W4323643744C33923547 @default.
- W4323643744 hasConceptScore W4323643744C41008148 @default.
- W4323643744 hasConceptScore W4323643744C80444323 @default.
- W4323643744 hasLocation W43236437441 @default.
- W4323643744 hasLocation W43236437442 @default.
- W4323643744 hasOpenAccess W4323643744 @default.
- W4323643744 hasPrimaryLocation W43236437441 @default.
- W4323643744 hasRelatedWork W1491338215 @default.
- W4323643744 hasRelatedWork W1756530473 @default.
- W4323643744 hasRelatedWork W1972014896 @default.
- W4323643744 hasRelatedWork W1993518163 @default.
- W4323643744 hasRelatedWork W2007826114 @default.
- W4323643744 hasRelatedWork W2040345527 @default.
- W4323643744 hasRelatedWork W2115669918 @default.
- W4323643744 hasRelatedWork W2316613179 @default.
- W4323643744 hasRelatedWork W3152777761 @default.
- W4323643744 hasRelatedWork W4287203154 @default.
- W4323643744 isParatext "false" @default.
- W4323643744 isRetracted "false" @default.
- W4323643744 workType "book-chapter" @default.