Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323644322> ?p ?o ?g. }
- W4323644322 endingPage "25371" @default.
- W4323644322 startingPage "25351" @default.
- W4323644322 abstract "The coronavirus pandemic has undoubtedly been one of the major recent events that have affected our society at the global level. During this period, unprecedented measures have been imposed worldwide by authorities in an effort to contain the spread of the disease. These measures have led to a worldwide debate among the public, occurring not least within the forum of social media, tapping into pre-existing trends of skepticism, such as vaccine hesitancy. At the same time, it has become apparent that the pandemic affected women and men differently. With these two themes in view, the paper aims to analyze using a data-driven approach the evolution of opinions with regards to vaccination against COVID-19 throughout the entire duration of the pandemic from the point of view of gender. For this analysis, approximately 1,500,000 short user-contributed texts have been retrieved from the popular microblogging platform Twitter, posted between 30 January 2020 and 30 November 2022. Using a machine learning approach, several classifiers have been trained to identify the likely gender ( <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>female</i> or <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>male</i> ) of the author, as well as the stance of the specific post towards the COVID-19 vaccines ( <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>neutral</i> , <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>in favor</i> , or <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>against</i> ), achieving 85.69% and 93.64% weighted accuracy measures for each problem, respectively. Based on this analysis, it can be observed that most tweets exhibit a <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>neutral</i> stance, while the number of tweets <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>in favor</i> of vaccination is greater than the number of tweets opposing vaccination, with the distribution varying across time in response to specific events. The subject matter of the tweets varied more between stances than between genders, suggesting that there is no significant difference between the contents of tweets posted by females and males. We also find that while the overall engagement on Twitter with the topic of vaccination against COVID-19 is on the wane, there has been a rise in the number of <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>against</i> tweets continuing into the present." @default.
- W4323644322 created "2023-03-10" @default.
- W4323644322 creator A5022497452 @default.
- W4323644322 creator A5024081062 @default.
- W4323644322 creator A5043717512 @default.
- W4323644322 creator A5063058647 @default.
- W4323644322 date "2023-01-01" @default.
- W4323644322 modified "2023-09-26" @default.
- W4323644322 title "1000 Days of COVID-19: A Gender-Based Long-Term Investigation into Attitudes With Regards to Vaccination" @default.
- W4323644322 cites W2032793012 @default.
- W4323644322 cites W2040467972 @default.
- W4323644322 cites W2042055831 @default.
- W4323644322 cites W2064675550 @default.
- W4323644322 cites W2099813784 @default.
- W4323644322 cites W2250539671 @default.
- W4323644322 cites W2460159515 @default.
- W4323644322 cites W2791484929 @default.
- W4323644322 cites W2890631927 @default.
- W4323644322 cites W2898960278 @default.
- W4323644322 cites W2923280274 @default.
- W4323644322 cites W2954444514 @default.
- W4323644322 cites W2966451006 @default.
- W4323644322 cites W2980342369 @default.
- W4323644322 cites W3033317208 @default.
- W4323644322 cites W3045495327 @default.
- W4323644322 cites W3094884396 @default.
- W4323644322 cites W3098173943 @default.
- W4323644322 cites W3124364749 @default.
- W4323644322 cites W3129318751 @default.
- W4323644322 cites W3184986677 @default.
- W4323644322 cites W3194604497 @default.
- W4323644322 cites W3198777996 @default.
- W4323644322 cites W3203760584 @default.
- W4323644322 cites W3204712960 @default.
- W4323644322 cites W3204884633 @default.
- W4323644322 cites W3209542363 @default.
- W4323644322 cites W4226475630 @default.
- W4323644322 cites W4229021258 @default.
- W4323644322 cites W4235479268 @default.
- W4323644322 cites W4282918638 @default.
- W4323644322 cites W4283717058 @default.
- W4323644322 cites W4283720093 @default.
- W4323644322 cites W4284881197 @default.
- W4323644322 cites W4285403448 @default.
- W4323644322 cites W4293569941 @default.
- W4323644322 cites W4296500216 @default.
- W4323644322 cites W4296905152 @default.
- W4323644322 cites W4297178699 @default.
- W4323644322 cites W4308428275 @default.
- W4323644322 cites W4309306658 @default.
- W4323644322 cites W4312854820 @default.
- W4323644322 cites W45953121 @default.
- W4323644322 doi "https://doi.org/10.1109/access.2023.3254503" @default.
- W4323644322 hasPublicationYear "2023" @default.
- W4323644322 type Work @default.
- W4323644322 citedByCount "1" @default.
- W4323644322 countsByYear W43236443222023 @default.
- W4323644322 crossrefType "journal-article" @default.
- W4323644322 hasAuthorship W4323644322A5022497452 @default.
- W4323644322 hasAuthorship W4323644322A5024081062 @default.
- W4323644322 hasAuthorship W4323644322A5043717512 @default.
- W4323644322 hasAuthorship W4323644322A5063058647 @default.
- W4323644322 hasBestOaLocation W43236443221 @default.
- W4323644322 hasConcept C108827166 @default.
- W4323644322 hasConcept C111472728 @default.
- W4323644322 hasConcept C136764020 @default.
- W4323644322 hasConcept C138885662 @default.
- W4323644322 hasConcept C142724271 @default.
- W4323644322 hasConcept C154945302 @default.
- W4323644322 hasConcept C15744967 @default.
- W4323644322 hasConcept C172656115 @default.
- W4323644322 hasConcept C18296254 @default.
- W4323644322 hasConcept C2779134260 @default.
- W4323644322 hasConcept C3008058167 @default.
- W4323644322 hasConcept C41008148 @default.
- W4323644322 hasConcept C518677369 @default.
- W4323644322 hasConcept C524204448 @default.
- W4323644322 hasConcept C71924100 @default.
- W4323644322 hasConcept C89623803 @default.
- W4323644322 hasConceptScore W4323644322C108827166 @default.
- W4323644322 hasConceptScore W4323644322C111472728 @default.
- W4323644322 hasConceptScore W4323644322C136764020 @default.
- W4323644322 hasConceptScore W4323644322C138885662 @default.
- W4323644322 hasConceptScore W4323644322C142724271 @default.
- W4323644322 hasConceptScore W4323644322C154945302 @default.
- W4323644322 hasConceptScore W4323644322C15744967 @default.
- W4323644322 hasConceptScore W4323644322C172656115 @default.
- W4323644322 hasConceptScore W4323644322C18296254 @default.
- W4323644322 hasConceptScore W4323644322C2779134260 @default.
- W4323644322 hasConceptScore W4323644322C3008058167 @default.
- W4323644322 hasConceptScore W4323644322C41008148 @default.
- W4323644322 hasConceptScore W4323644322C518677369 @default.
- W4323644322 hasConceptScore W4323644322C524204448 @default.
- W4323644322 hasConceptScore W4323644322C71924100 @default.
- W4323644322 hasConceptScore W4323644322C89623803 @default.
- W4323644322 hasFunder F4320318622 @default.
- W4323644322 hasLocation W43236443221 @default.
- W4323644322 hasOpenAccess W4323644322 @default.