Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323647534> ?p ?o ?g. }
- W4323647534 endingPage "123" @default.
- W4323647534 startingPage "107" @default.
- W4323647534 abstract "Scene text in natural images contains a wealth of valuable semantic information. To read scene text from the image, various text spotting techniques that jointly detect and recognize scene text have been proposed in recent years. In this paper, we present a novel end-to-end text spotting network SPRNet for arbitrary-shaped scene text. We propose a parametric B-spline centerline-based representation model to describe the distinctive global shape characteristics of the text, which helps to effectively deal with interferences such as local connection and tight spacing of text and other object, and a text is detected by regressing its shape parameters. Further, exploiting the text’s shape cues, we employ adaptive projection transformations to rectify the feature representation of an irregular text, which improves the accuracy of the subsequent text recognition network. Our method achieves competitive text spotting performance on standard benchmarks through a simple architecture equipped with the proposed text representation and rectification mechanism, which demonstrates the effectiveness of the method in detecting and recognizing scene text with arbitrary shapes." @default.
- W4323647534 created "2023-03-10" @default.
- W4323647534 creator A5006378862 @default.
- W4323647534 creator A5012324763 @default.
- W4323647534 creator A5015824704 @default.
- W4323647534 creator A5059791894 @default.
- W4323647534 date "2023-01-01" @default.
- W4323647534 modified "2023-09-24" @default.
- W4323647534 title "Reading Arbitrary-Shaped Scene Text from Images Through Spline Regression and Rectification" @default.
- W4323647534 cites W1903029394 @default.
- W4323647534 cites W1922126009 @default.
- W4323647534 cites W2008806374 @default.
- W4323647534 cites W2127141656 @default.
- W4323647534 cites W2144554289 @default.
- W4323647534 cites W2194187530 @default.
- W4323647534 cites W2194775991 @default.
- W4323647534 cites W2294053032 @default.
- W4323647534 cites W2343052201 @default.
- W4323647534 cites W2550687635 @default.
- W4323647534 cites W2565639579 @default.
- W4323647534 cites W2605982830 @default.
- W4323647534 cites W2750938222 @default.
- W4323647534 cites W2776766448 @default.
- W4323647534 cites W2777652944 @default.
- W4323647534 cites W2810028092 @default.
- W4323647534 cites W2810983211 @default.
- W4323647534 cites W2875814315 @default.
- W4323647534 cites W2906333459 @default.
- W4323647534 cites W2962986948 @default.
- W4323647534 cites W2963150697 @default.
- W4323647534 cites W2963299604 @default.
- W4323647534 cites W2963353821 @default.
- W4323647534 cites W2963517393 @default.
- W4323647534 cites W2963526661 @default.
- W4323647534 cites W2963647456 @default.
- W4323647534 cites W2963712589 @default.
- W4323647534 cites W2964018263 @default.
- W4323647534 cites W2964241181 @default.
- W4323647534 cites W2965066169 @default.
- W4323647534 cites W2968226676 @default.
- W4323647534 cites W2981969038 @default.
- W4323647534 cites W2983626510 @default.
- W4323647534 cites W2988098900 @default.
- W4323647534 cites W2991626090 @default.
- W4323647534 cites W2996956254 @default.
- W4323647534 cites W2997371611 @default.
- W4323647534 cites W2999874489 @default.
- W4323647534 cites W3005436539 @default.
- W4323647534 cites W3034792612 @default.
- W4323647534 cites W3110398855 @default.
- W4323647534 cites W3111911450 @default.
- W4323647534 cites W3168156488 @default.
- W4323647534 doi "https://doi.org/10.1007/978-3-031-26348-4_7" @default.
- W4323647534 hasPublicationYear "2023" @default.
- W4323647534 type Work @default.
- W4323647534 citedByCount "0" @default.
- W4323647534 crossrefType "book-chapter" @default.
- W4323647534 hasAuthorship W4323647534A5006378862 @default.
- W4323647534 hasAuthorship W4323647534A5012324763 @default.
- W4323647534 hasAuthorship W4323647534A5015824704 @default.
- W4323647534 hasAuthorship W4323647534A5059791894 @default.
- W4323647534 hasConcept C11413529 @default.
- W4323647534 hasConcept C115961682 @default.
- W4323647534 hasConcept C153180895 @default.
- W4323647534 hasConcept C154945302 @default.
- W4323647534 hasConcept C17744445 @default.
- W4323647534 hasConcept C199539241 @default.
- W4323647534 hasConcept C2776359362 @default.
- W4323647534 hasConcept C2779506182 @default.
- W4323647534 hasConcept C2781213101 @default.
- W4323647534 hasConcept C2983589003 @default.
- W4323647534 hasConcept C31972630 @default.
- W4323647534 hasConcept C41008148 @default.
- W4323647534 hasConcept C57493831 @default.
- W4323647534 hasConcept C94625758 @default.
- W4323647534 hasConceptScore W4323647534C11413529 @default.
- W4323647534 hasConceptScore W4323647534C115961682 @default.
- W4323647534 hasConceptScore W4323647534C153180895 @default.
- W4323647534 hasConceptScore W4323647534C154945302 @default.
- W4323647534 hasConceptScore W4323647534C17744445 @default.
- W4323647534 hasConceptScore W4323647534C199539241 @default.
- W4323647534 hasConceptScore W4323647534C2776359362 @default.
- W4323647534 hasConceptScore W4323647534C2779506182 @default.
- W4323647534 hasConceptScore W4323647534C2781213101 @default.
- W4323647534 hasConceptScore W4323647534C2983589003 @default.
- W4323647534 hasConceptScore W4323647534C31972630 @default.
- W4323647534 hasConceptScore W4323647534C41008148 @default.
- W4323647534 hasConceptScore W4323647534C57493831 @default.
- W4323647534 hasConceptScore W4323647534C94625758 @default.
- W4323647534 hasLocation W43236475341 @default.
- W4323647534 hasOpenAccess W4323647534 @default.
- W4323647534 hasPrimaryLocation W43236475341 @default.
- W4323647534 hasRelatedWork W1554833030 @default.
- W4323647534 hasRelatedWork W2001208534 @default.
- W4323647534 hasRelatedWork W2005185696 @default.
- W4323647534 hasRelatedWork W2323788589 @default.
- W4323647534 hasRelatedWork W2559372442 @default.
- W4323647534 hasRelatedWork W2742860341 @default.