Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323647688> ?p ?o ?g. }
- W4323647688 endingPage "160" @default.
- W4323647688 startingPage "142" @default.
- W4323647688 abstract "Although gaze estimation methods have been developed with deep learning techniques, there has been no such approach as aim to attain accurate performance in low-resolution face images with a pixel width of 50 pixels or less. To solve a limitation under the challenging low-resolution conditions, we propose a high-frequency attentive super-resolved gaze estimation network, i.e., HAZE-Net. Our network improves the resolution of the input image and enhances the eye features and those boundaries via a proposed super-resolution module based on a high-frequency attention block. In addition, our gaze estimation module utilizes high-frequency components of the eye as well as the global appearance map. We also utilize the structural location information of faces to approximate head pose. The experimental results indicate that the proposed method exhibits robust gaze estimation performance even in low-resolution face images with 28 $$times $$ 28 pixels. The source code of this work is available at https://github.com/dbseorms16/HAZE_Net/ ." @default.
- W4323647688 created "2023-03-10" @default.
- W4323647688 creator A5002923421 @default.
- W4323647688 creator A5034400938 @default.
- W4323647688 creator A5038009350 @default.
- W4323647688 creator A5046704537 @default.
- W4323647688 creator A5056604933 @default.
- W4323647688 date "2023-01-01" @default.
- W4323647688 modified "2023-09-26" @default.
- W4323647688 title "HAZE-Net: High-Frequency Attentive Super-Resolved Gaze Estimation in Low-Resolution Face Images" @default.
- W4323647688 cites W2059916030 @default.
- W4323647688 cites W2064760159 @default.
- W4323647688 cites W2088589122 @default.
- W4323647688 cites W2133665775 @default.
- W4323647688 cites W2212494831 @default.
- W4323647688 cites W2468114283 @default.
- W4323647688 cites W2479344183 @default.
- W4323647688 cites W2557669140 @default.
- W4323647688 cites W2585635281 @default.
- W4323647688 cites W2605289374 @default.
- W4323647688 cites W2795960359 @default.
- W4323647688 cites W2796850409 @default.
- W4323647688 cites W2807126412 @default.
- W4323647688 cites W2866634454 @default.
- W4323647688 cites W2884915206 @default.
- W4323647688 cites W2895535699 @default.
- W4323647688 cites W2921627265 @default.
- W4323647688 cites W2954930822 @default.
- W4323647688 cites W2961516132 @default.
- W4323647688 cites W2962803520 @default.
- W4323647688 cites W2963709863 @default.
- W4323647688 cites W2963729050 @default.
- W4323647688 cites W2964101377 @default.
- W4323647688 cites W2978796584 @default.
- W4323647688 cites W2982717194 @default.
- W4323647688 cites W2986102820 @default.
- W4323647688 cites W2993728126 @default.
- W4323647688 cites W2998355285 @default.
- W4323647688 cites W3013897564 @default.
- W4323647688 cites W3034548728 @default.
- W4323647688 cites W3034552680 @default.
- W4323647688 cites W3035280441 @default.
- W4323647688 cites W3035467803 @default.
- W4323647688 cites W3096147990 @default.
- W4323647688 cites W3096739052 @default.
- W4323647688 cites W3106262690 @default.
- W4323647688 cites W3136078915 @default.
- W4323647688 cites W3174359952 @default.
- W4323647688 cites W3179869298 @default.
- W4323647688 cites W3188642398 @default.
- W4323647688 cites W3204887624 @default.
- W4323647688 cites W3207918547 @default.
- W4323647688 doi "https://doi.org/10.1007/978-3-031-26348-4_9" @default.
- W4323647688 hasPublicationYear "2023" @default.
- W4323647688 type Work @default.
- W4323647688 citedByCount "0" @default.
- W4323647688 crossrefType "book-chapter" @default.
- W4323647688 hasAuthorship W4323647688A5002923421 @default.
- W4323647688 hasAuthorship W4323647688A5034400938 @default.
- W4323647688 hasAuthorship W4323647688A5038009350 @default.
- W4323647688 hasAuthorship W4323647688A5046704537 @default.
- W4323647688 hasAuthorship W4323647688A5056604933 @default.
- W4323647688 hasBestOaLocation W43236476882 @default.
- W4323647688 hasConcept C115961682 @default.
- W4323647688 hasConcept C144024400 @default.
- W4323647688 hasConcept C153294291 @default.
- W4323647688 hasConcept C154945302 @default.
- W4323647688 hasConcept C160633673 @default.
- W4323647688 hasConcept C205372480 @default.
- W4323647688 hasConcept C205649164 @default.
- W4323647688 hasConcept C2524010 @default.
- W4323647688 hasConcept C2777210771 @default.
- W4323647688 hasConcept C2779304628 @default.
- W4323647688 hasConcept C2779916870 @default.
- W4323647688 hasConcept C31972630 @default.
- W4323647688 hasConcept C33923547 @default.
- W4323647688 hasConcept C36289849 @default.
- W4323647688 hasConcept C41008148 @default.
- W4323647688 hasConcept C79974267 @default.
- W4323647688 hasConceptScore W4323647688C115961682 @default.
- W4323647688 hasConceptScore W4323647688C144024400 @default.
- W4323647688 hasConceptScore W4323647688C153294291 @default.
- W4323647688 hasConceptScore W4323647688C154945302 @default.
- W4323647688 hasConceptScore W4323647688C160633673 @default.
- W4323647688 hasConceptScore W4323647688C205372480 @default.
- W4323647688 hasConceptScore W4323647688C205649164 @default.
- W4323647688 hasConceptScore W4323647688C2524010 @default.
- W4323647688 hasConceptScore W4323647688C2777210771 @default.
- W4323647688 hasConceptScore W4323647688C2779304628 @default.
- W4323647688 hasConceptScore W4323647688C2779916870 @default.
- W4323647688 hasConceptScore W4323647688C31972630 @default.
- W4323647688 hasConceptScore W4323647688C33923547 @default.
- W4323647688 hasConceptScore W4323647688C36289849 @default.
- W4323647688 hasConceptScore W4323647688C41008148 @default.
- W4323647688 hasConceptScore W4323647688C79974267 @default.
- W4323647688 hasLocation W43236476881 @default.
- W4323647688 hasLocation W43236476882 @default.
- W4323647688 hasOpenAccess W4323647688 @default.