Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323652312> ?p ?o ?g. }
- W4323652312 endingPage "e0282562" @default.
- W4323652312 startingPage "e0282562" @default.
- W4323652312 abstract "Using a relatively small training set of ~16 thousand images from macromolecular crystallisation experiments, we compare classification results obtained with four of the most widely-used convolutional deep-learning network architectures that can be implemented without the need for extensive computational resources. We show that the classifiers have different strengths that can be combined to provide an ensemble classifier achieving a classification accuracy comparable to that obtained by a large consortium initiative. We use eight classes to effectively rank the experimental outcomes, thereby providing detailed information that can be used with routine crystallography experiments to automatically identify crystal formation for drug discovery and pave the way for further exploration of the relationship between crystal formation and crystallisation conditions." @default.
- W4323652312 created "2023-03-10" @default.
- W4323652312 creator A5015411537 @default.
- W4323652312 creator A5024117094 @default.
- W4323652312 creator A5033971175 @default.
- W4323652312 creator A5043016182 @default.
- W4323652312 creator A5050541539 @default.
- W4323652312 date "2023-03-09" @default.
- W4323652312 modified "2023-10-18" @default.
- W4323652312 title "Not getting in too deep: A practical deep learning approach to routine crystallisation image classification" @default.
- W4323652312 cites W1496974366 @default.
- W4323652312 cites W1568573892 @default.
- W4323652312 cites W1992052308 @default.
- W4323652312 cites W2002407915 @default.
- W4323652312 cites W2006446553 @default.
- W4323652312 cites W2053700828 @default.
- W4323652312 cites W2073469793 @default.
- W4323652312 cites W2075605224 @default.
- W4323652312 cites W2097117768 @default.
- W4323652312 cites W2112173990 @default.
- W4323652312 cites W2136036882 @default.
- W4323652312 cites W2141986488 @default.
- W4323652312 cites W2143738177 @default.
- W4323652312 cites W2158109314 @default.
- W4323652312 cites W2160855984 @default.
- W4323652312 cites W2183341477 @default.
- W4323652312 cites W2194775991 @default.
- W4323652312 cites W2531409750 @default.
- W4323652312 cites W2567719433 @default.
- W4323652312 cites W2795184991 @default.
- W4323652312 cites W2893813411 @default.
- W4323652312 cites W2918032834 @default.
- W4323652312 cites W2963446712 @default.
- W4323652312 cites W3125981223 @default.
- W4323652312 cites W3130107878 @default.
- W4323652312 cites W3159001838 @default.
- W4323652312 cites W3162486125 @default.
- W4323652312 cites W3185346444 @default.
- W4323652312 cites W3209359429 @default.
- W4323652312 doi "https://doi.org/10.1371/journal.pone.0282562" @default.
- W4323652312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36893084" @default.
- W4323652312 hasPublicationYear "2023" @default.
- W4323652312 type Work @default.
- W4323652312 citedByCount "1" @default.
- W4323652312 countsByYear W43236523122023 @default.
- W4323652312 crossrefType "journal-article" @default.
- W4323652312 hasAuthorship W4323652312A5015411537 @default.
- W4323652312 hasAuthorship W4323652312A5024117094 @default.
- W4323652312 hasAuthorship W4323652312A5033971175 @default.
- W4323652312 hasAuthorship W4323652312A5043016182 @default.
- W4323652312 hasAuthorship W4323652312A5050541539 @default.
- W4323652312 hasBestOaLocation W43236523121 @default.
- W4323652312 hasConcept C108583219 @default.
- W4323652312 hasConcept C115961682 @default.
- W4323652312 hasConcept C119857082 @default.
- W4323652312 hasConcept C124101348 @default.
- W4323652312 hasConcept C153180895 @default.
- W4323652312 hasConcept C154945302 @default.
- W4323652312 hasConcept C178790620 @default.
- W4323652312 hasConcept C185592680 @default.
- W4323652312 hasConcept C203036418 @default.
- W4323652312 hasConcept C41008148 @default.
- W4323652312 hasConcept C75294576 @default.
- W4323652312 hasConcept C81363708 @default.
- W4323652312 hasConcept C95623464 @default.
- W4323652312 hasConceptScore W4323652312C108583219 @default.
- W4323652312 hasConceptScore W4323652312C115961682 @default.
- W4323652312 hasConceptScore W4323652312C119857082 @default.
- W4323652312 hasConceptScore W4323652312C124101348 @default.
- W4323652312 hasConceptScore W4323652312C153180895 @default.
- W4323652312 hasConceptScore W4323652312C154945302 @default.
- W4323652312 hasConceptScore W4323652312C178790620 @default.
- W4323652312 hasConceptScore W4323652312C185592680 @default.
- W4323652312 hasConceptScore W4323652312C203036418 @default.
- W4323652312 hasConceptScore W4323652312C41008148 @default.
- W4323652312 hasConceptScore W4323652312C75294576 @default.
- W4323652312 hasConceptScore W4323652312C81363708 @default.
- W4323652312 hasConceptScore W4323652312C95623464 @default.
- W4323652312 hasFunder F4320334627 @default.
- W4323652312 hasIssue "3" @default.
- W4323652312 hasLocation W43236523121 @default.
- W4323652312 hasLocation W43236523122 @default.
- W4323652312 hasLocation W43236523123 @default.
- W4323652312 hasLocation W43236523124 @default.
- W4323652312 hasLocation W43236523125 @default.
- W4323652312 hasOpenAccess W4323652312 @default.
- W4323652312 hasPrimaryLocation W43236523121 @default.
- W4323652312 hasRelatedWork W2470368200 @default.
- W4323652312 hasRelatedWork W2742991909 @default.
- W4323652312 hasRelatedWork W2766604260 @default.
- W4323652312 hasRelatedWork W2986507176 @default.
- W4323652312 hasRelatedWork W2996856019 @default.
- W4323652312 hasRelatedWork W3018421652 @default.
- W4323652312 hasRelatedWork W3160711233 @default.
- W4323652312 hasRelatedWork W4220996320 @default.
- W4323652312 hasRelatedWork W4225852842 @default.
- W4323652312 hasRelatedWork W4306753247 @default.
- W4323652312 hasVolume "18" @default.