Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323654586> ?p ?o ?g. }
- W4323654586 endingPage "e14371" @default.
- W4323654586 startingPage "e14371" @default.
- W4323654586 abstract "Background and objectivesThe detection of tumor-infiltrating lymphocytes (TILs) could aid in the development of objective measures of the infiltration grade and can support decision-making in breast cancer (BC). However, manual quantification of TILs in BC histopathological whole slide images (WSI) is currently based on a visual assessment, thus resulting not standardized, not reproducible, and time-consuming for pathologists. In this work, a novel pathomic approach, aimed to apply high-throughput image feature extraction techniques to analyze the microscopic patterns in WSI, is proposed. In fact, pathomic features provide additional information concerning the underlying biological processes compared to the WSI visual interpretation, thus providing more easily interpretable and explainable results than the most frequently investigated Deep Learning based methods in the literature.MethodsA dataset containing 1037 regions of interest with tissue compartments and TILs annotated on 195 TNBC and HER2+ BC hematoxylin and eosin (H&E)-stained WSI was used. After segmenting nuclei within tumor-associated stroma using a watershed-based approach, 71 pathomic features were extracted from each nucleus and reduced using a Spearman's correlation filter followed by a nonparametric Wilcoxon rank-sum test and least absolute shrinkage and selection operator. The relevant features were used to classify each candidate nucleus as either TILs or non-TILs using 5 multivariable machine learning classification models trained using 5-fold cross-validation (1) without resampling, (2) with the synthetic minority over-sampling technique and (3) with downsampling. The prediction performance of the models was assessed using ROC curves.Results21 features were selected, with most of them related to the well-known TILs properties of having regular shape, clearer margins, high peak intensity, more homogeneous enhancement and different textural pattern than other cells. The best performance was obtained by Random-Forest with ROC AUC of 0.86, regardless of resampling technique.ConclusionsThe presented approach holds promise for the classification of TILs in BC H&E-stained WSI and could provide support to pathologists for a reliable, rapid and interpretable clinical assessment of TILs in BC." @default.
- W4323654586 created "2023-03-10" @default.
- W4323654586 creator A5008998108 @default.
- W4323654586 creator A5015309307 @default.
- W4323654586 creator A5032731543 @default.
- W4323654586 creator A5054184668 @default.
- W4323654586 creator A5056776194 @default.
- W4323654586 creator A5074115401 @default.
- W4323654586 date "2023-03-01" @default.
- W4323654586 modified "2023-10-17" @default.
- W4323654586 title "A pathomic approach for tumor-infiltrating lymphocytes classification on breast cancer digital pathology images" @default.
- W4323654586 cites W1970120446 @default.
- W4323654586 cites W1993947467 @default.
- W4323654586 cites W1998644662 @default.
- W4323654586 cites W2054821087 @default.
- W4323654586 cites W2083927153 @default.
- W4323654586 cites W2099098868 @default.
- W4323654586 cites W2099540110 @default.
- W4323654586 cites W2107377519 @default.
- W4323654586 cites W2120431466 @default.
- W4323654586 cites W2133059825 @default.
- W4323654586 cites W2148143831 @default.
- W4323654586 cites W2159551006 @default.
- W4323654586 cites W2178133357 @default.
- W4323654586 cites W2302501749 @default.
- W4323654586 cites W2343160907 @default.
- W4323654586 cites W2504150216 @default.
- W4323654586 cites W2514628397 @default.
- W4323654586 cites W2592905743 @default.
- W4323654586 cites W2724494584 @default.
- W4323654586 cites W2796409016 @default.
- W4323654586 cites W2809253081 @default.
- W4323654586 cites W2811106513 @default.
- W4323654586 cites W2844479918 @default.
- W4323654586 cites W2891800461 @default.
- W4323654586 cites W2907772920 @default.
- W4323654586 cites W2912357784 @default.
- W4323654586 cites W2945976633 @default.
- W4323654586 cites W2952481429 @default.
- W4323654586 cites W2964611302 @default.
- W4323654586 cites W2965743638 @default.
- W4323654586 cites W2969657290 @default.
- W4323654586 cites W2979773192 @default.
- W4323654586 cites W2990696380 @default.
- W4323654586 cites W3016045558 @default.
- W4323654586 cites W3016939709 @default.
- W4323654586 cites W3025630280 @default.
- W4323654586 cites W3030889987 @default.
- W4323654586 cites W3089064400 @default.
- W4323654586 cites W3094071141 @default.
- W4323654586 cites W3106266685 @default.
- W4323654586 cites W3109000640 @default.
- W4323654586 cites W3132682314 @default.
- W4323654586 cites W3133587532 @default.
- W4323654586 cites W3154595990 @default.
- W4323654586 cites W3176612188 @default.
- W4323654586 cites W3187048440 @default.
- W4323654586 cites W3194062143 @default.
- W4323654586 cites W3204514574 @default.
- W4323654586 cites W3209272191 @default.
- W4323654586 cites W3214960410 @default.
- W4323654586 cites W4200426571 @default.
- W4323654586 cites W4206953207 @default.
- W4323654586 cites W4213294068 @default.
- W4323654586 cites W4225116060 @default.
- W4323654586 cites W4280494974 @default.
- W4323654586 cites W4281479916 @default.
- W4323654586 cites W4283065867 @default.
- W4323654586 cites W4284706663 @default.
- W4323654586 doi "https://doi.org/10.1016/j.heliyon.2023.e14371" @default.
- W4323654586 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36950640" @default.
- W4323654586 hasPublicationYear "2023" @default.
- W4323654586 type Work @default.
- W4323654586 citedByCount "1" @default.
- W4323654586 countsByYear W43236545862023 @default.
- W4323654586 crossrefType "journal-article" @default.
- W4323654586 hasAuthorship W4323654586A5008998108 @default.
- W4323654586 hasAuthorship W4323654586A5015309307 @default.
- W4323654586 hasAuthorship W4323654586A5032731543 @default.
- W4323654586 hasAuthorship W4323654586A5054184668 @default.
- W4323654586 hasAuthorship W4323654586A5056776194 @default.
- W4323654586 hasAuthorship W4323654586A5074115401 @default.
- W4323654586 hasBestOaLocation W43236545861 @default.
- W4323654586 hasConcept C119857082 @default.
- W4323654586 hasConcept C121608353 @default.
- W4323654586 hasConcept C126322002 @default.
- W4323654586 hasConcept C12868164 @default.
- W4323654586 hasConcept C142724271 @default.
- W4323654586 hasConcept C148483581 @default.
- W4323654586 hasConcept C150921843 @default.
- W4323654586 hasConcept C153180895 @default.
- W4323654586 hasConcept C154945302 @default.
- W4323654586 hasConcept C206041023 @default.
- W4323654586 hasConcept C2777522853 @default.
- W4323654586 hasConcept C2777701055 @default.
- W4323654586 hasConcept C2778326572 @default.
- W4323654586 hasConcept C41008148 @default.
- W4323654586 hasConcept C530470458 @default.