Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323654900> ?p ?o ?g. }
- W4323654900 endingPage "103663" @default.
- W4323654900 startingPage "103663" @default.
- W4323654900 abstract "Slush hydrogen is a mixture of liquid hydrogen and solid hydrogen particles, and considered as an attractive propulsion fuel. The preparation process of slush hydrogen is complex. This paper describes a slush hydrogen preparation device which enables hydrogen liquefaction, liquid hydrogen storage, liquid hydrogen transfer, pumping decompression of liquid hydrogen, slush hydrogen observation, and hydrogen emission. In an open area, many tests using liquid hydrogen are conducted. The results show that 1) The scheme of hydrogen liquefaction using two-stage Gifford- Mcmahon (G-M) refrigerator is feasibility, and the liquefying rate of hydrogen is 0.45 L/h, which meets the consumption of slush hydrogen preparation. 2) In the triple-phase point state, average pressure and temperature of liquid hydrogen are measured as 7.1 kPa and 14.03 K respectively. Compared with NIST physical property data, the relative errors of pressure and temperature are 3.4% and 0.5%, respectively. 3) The formation process of solid hydrogen by the pumping decompression is observed. It is found that the solid hydrogen first nucleates on the Dewar wall. With the continuous run of the vacuum pump, the solid hydrogen gradually grows until dense solid hydrogen is formed, resulting that the light could not pass through it. It indicates that liquid hydrogen in the area near the gas–liquid interface could be completely frozen by the pumping decompression method. 4) The formation of slush hydrogen by a freezing-melting method is observed. It is found that the solid hydrogen forms porous structures due to the boiling fluctuation of liquid hydrogen during the freezing process, and the porous solid hydrogen in the liquid hydrogen forms a fragment or sheet shape again under the boiling action of liquid hydrogen during the melting process. When the vacuum pump is opened again, the violent boiling of the liquid hydrogen causes the fragmented solid hydrogen in the liquid hydrogen to be broken into irregular solid hydrogen particles again. Under the action of Gibbs free energy, irregular solid hydrogen particles form small spherical solid hydrogen particles suspended in liquid hydrogen. 5) Three states of liquid hydrogen, solid hydrogen in liquid hydrogen and slush hydrogen are visually compared. It is found that the observed slush hydrogen is a turbid and viscous state, which is a solid–liquid mixture of tiny solid hydrogen particles suspended in liquid hydrogen. At the same time, the weak motion behavior of viscous fluid is also observed. 6)The leakage heat of the slush hydrogen Dewar is calculated as 4.13 W by the liquid level drop rate, which is 1.66 times of the theoretical calculation, and it could provide a technical reference for the design of liquid hydrogen Dewar." @default.
- W4323654900 created "2023-03-10" @default.
- W4323654900 creator A5011474075 @default.
- W4323654900 creator A5017202973 @default.
- W4323654900 creator A5032084086 @default.
- W4323654900 creator A5036188295 @default.
- W4323654900 creator A5038305852 @default.
- W4323654900 creator A5064386929 @default.
- W4323654900 creator A5076429505 @default.
- W4323654900 date "2023-04-01" @default.
- W4323654900 modified "2023-10-14" @default.
- W4323654900 title "Visual experimental study of slush hydrogen production by freezing-melting method" @default.
- W4323654900 cites W1504229873 @default.
- W4323654900 cites W1967914555 @default.
- W4323654900 cites W1984659934 @default.
- W4323654900 cites W1987687680 @default.
- W4323654900 cites W1998913209 @default.
- W4323654900 cites W2013462828 @default.
- W4323654900 cites W2027962041 @default.
- W4323654900 cites W2030305144 @default.
- W4323654900 cites W2067210428 @default.
- W4323654900 cites W2089061818 @default.
- W4323654900 cites W2325651715 @default.
- W4323654900 cites W2753308627 @default.
- W4323654900 cites W2766927291 @default.
- W4323654900 cites W2789510734 @default.
- W4323654900 cites W2790303178 @default.
- W4323654900 cites W346508021 @default.
- W4323654900 cites W4212975808 @default.
- W4323654900 cites W4297215792 @default.
- W4323654900 doi "https://doi.org/10.1016/j.cryogenics.2023.103663" @default.
- W4323654900 hasPublicationYear "2023" @default.
- W4323654900 type Work @default.
- W4323654900 citedByCount "1" @default.
- W4323654900 countsByYear W43236549002023 @default.
- W4323654900 crossrefType "journal-article" @default.
- W4323654900 hasAuthorship W4323654900A5011474075 @default.
- W4323654900 hasAuthorship W4323654900A5017202973 @default.
- W4323654900 hasAuthorship W4323654900A5032084086 @default.
- W4323654900 hasAuthorship W4323654900A5036188295 @default.
- W4323654900 hasAuthorship W4323654900A5038305852 @default.
- W4323654900 hasAuthorship W4323654900A5064386929 @default.
- W4323654900 hasAuthorship W4323654900A5076429505 @default.
- W4323654900 hasConcept C121332964 @default.
- W4323654900 hasConcept C127413603 @default.
- W4323654900 hasConcept C127732161 @default.
- W4323654900 hasConcept C147789679 @default.
- W4323654900 hasConcept C159985019 @default.
- W4323654900 hasConcept C163127949 @default.
- W4323654900 hasConcept C169560958 @default.
- W4323654900 hasConcept C17168322 @default.
- W4323654900 hasConcept C17525397 @default.
- W4323654900 hasConcept C178790620 @default.
- W4323654900 hasConcept C179725390 @default.
- W4323654900 hasConcept C185592680 @default.
- W4323654900 hasConcept C191859794 @default.
- W4323654900 hasConcept C192562407 @default.
- W4323654900 hasConcept C19449701 @default.
- W4323654900 hasConcept C200093464 @default.
- W4323654900 hasConcept C202189072 @default.
- W4323654900 hasConcept C2779398823 @default.
- W4323654900 hasConcept C29621489 @default.
- W4323654900 hasConcept C42360764 @default.
- W4323654900 hasConcept C512968161 @default.
- W4323654900 hasConcept C68044625 @default.
- W4323654900 hasConcept C68801617 @default.
- W4323654900 hasConcept C97355855 @default.
- W4323654900 hasConceptScore W4323654900C121332964 @default.
- W4323654900 hasConceptScore W4323654900C127413603 @default.
- W4323654900 hasConceptScore W4323654900C127732161 @default.
- W4323654900 hasConceptScore W4323654900C147789679 @default.
- W4323654900 hasConceptScore W4323654900C159985019 @default.
- W4323654900 hasConceptScore W4323654900C163127949 @default.
- W4323654900 hasConceptScore W4323654900C169560958 @default.
- W4323654900 hasConceptScore W4323654900C17168322 @default.
- W4323654900 hasConceptScore W4323654900C17525397 @default.
- W4323654900 hasConceptScore W4323654900C178790620 @default.
- W4323654900 hasConceptScore W4323654900C179725390 @default.
- W4323654900 hasConceptScore W4323654900C185592680 @default.
- W4323654900 hasConceptScore W4323654900C191859794 @default.
- W4323654900 hasConceptScore W4323654900C192562407 @default.
- W4323654900 hasConceptScore W4323654900C19449701 @default.
- W4323654900 hasConceptScore W4323654900C200093464 @default.
- W4323654900 hasConceptScore W4323654900C202189072 @default.
- W4323654900 hasConceptScore W4323654900C2779398823 @default.
- W4323654900 hasConceptScore W4323654900C29621489 @default.
- W4323654900 hasConceptScore W4323654900C42360764 @default.
- W4323654900 hasConceptScore W4323654900C512968161 @default.
- W4323654900 hasConceptScore W4323654900C68044625 @default.
- W4323654900 hasConceptScore W4323654900C68801617 @default.
- W4323654900 hasConceptScore W4323654900C97355855 @default.
- W4323654900 hasFunder F4320321001 @default.
- W4323654900 hasFunder F4320321543 @default.
- W4323654900 hasFunder F4320335443 @default.
- W4323654900 hasLocation W43236549001 @default.
- W4323654900 hasOpenAccess W4323654900 @default.
- W4323654900 hasPrimaryLocation W43236549001 @default.
- W4323654900 hasRelatedWork W168516219 @default.