Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323660327> ?p ?o ?g. }
- W4323660327 abstract "Abstract Accurately estimation of evapotranspiration is very essential for water resources planning and management projects. In this study, different regression-based machine learning techniques including support vector machine (SVM), random forest (RF), Bagged trees algorithm (BaT) and Boosting trees algorithm (BoT) were adopted in order to model daily reference evapotranspiration (ET 0 ) for semi-arid region. Five stations in Hemren catchment basin located at the North-East part of Iraq were selected as case study. Several climatic parameters including solar radiation (SR), wind speed (Us), relative humidity (RH), and maximum and minimum air temperatures (Tmax and Tmin) of 35 years (1979–2014) period were used as inputs to the models. Assessment of the methods with various input combinations indicated that the RF method especially with Tmax, Tmin, Tmean & SR inputs provided the best accuracy in estimating daily ET 0 in all stations. It was followed by the BaT and BoT methods while the SVM had the worst accuracy. In some cases, 1st input scenario (Tmax, Tmin, Tmean, SR, WS and RH) provided slightly better accuracy than the 2nd input scenario (Tmax, Tmin, Tmean & SR)." @default.
- W4323660327 created "2023-03-10" @default.
- W4323660327 creator A5011035182 @default.
- W4323660327 creator A5016315589 @default.
- W4323660327 creator A5024263540 @default.
- W4323660327 creator A5059823880 @default.
- W4323660327 date "2023-03-09" @default.
- W4323660327 modified "2023-10-06" @default.
- W4323660327 title "Predicting reference evapotranspiration in semi-arid-region by regression- based machine learning methods using limited climatic inputs" @default.
- W4323660327 cites W1538237107 @default.
- W4323660327 cites W1610891465 @default.
- W4323660327 cites W1960381360 @default.
- W4323660327 cites W1979723077 @default.
- W4323660327 cites W1984790449 @default.
- W4323660327 cites W2001747391 @default.
- W4323660327 cites W2016044589 @default.
- W4323660327 cites W2016237711 @default.
- W4323660327 cites W2019874943 @default.
- W4323660327 cites W2032993224 @default.
- W4323660327 cites W2051798177 @default.
- W4323660327 cites W2070493638 @default.
- W4323660327 cites W2084629023 @default.
- W4323660327 cites W2085250887 @default.
- W4323660327 cites W2088932912 @default.
- W4323660327 cites W2091232816 @default.
- W4323660327 cites W2112084935 @default.
- W4323660327 cites W2126479957 @default.
- W4323660327 cites W2134757725 @default.
- W4323660327 cites W2135695572 @default.
- W4323660327 cites W2145114759 @default.
- W4323660327 cites W2150067047 @default.
- W4323660327 cites W2153748528 @default.
- W4323660327 cites W2157144502 @default.
- W4323660327 cites W2159103275 @default.
- W4323660327 cites W2167453193 @default.
- W4323660327 cites W2171125286 @default.
- W4323660327 cites W2171635747 @default.
- W4323660327 cites W2196961118 @default.
- W4323660327 cites W2292794918 @default.
- W4323660327 cites W2513074406 @default.
- W4323660327 cites W2560398905 @default.
- W4323660327 cites W2592541999 @default.
- W4323660327 cites W2594022226 @default.
- W4323660327 cites W2595433512 @default.
- W4323660327 cites W2613781739 @default.
- W4323660327 cites W2754395170 @default.
- W4323660327 cites W2760185290 @default.
- W4323660327 cites W2773042562 @default.
- W4323660327 cites W2887166489 @default.
- W4323660327 cites W2887176132 @default.
- W4323660327 cites W2893090934 @default.
- W4323660327 cites W2904015381 @default.
- W4323660327 cites W2912705864 @default.
- W4323660327 cites W2914931835 @default.
- W4323660327 cites W2920819147 @default.
- W4323660327 cites W2941039154 @default.
- W4323660327 cites W2977702035 @default.
- W4323660327 cites W2979535451 @default.
- W4323660327 cites W2980639605 @default.
- W4323660327 cites W2981046867 @default.
- W4323660327 cites W3009198333 @default.
- W4323660327 cites W3011662410 @default.
- W4323660327 cites W3038144624 @default.
- W4323660327 cites W3045578620 @default.
- W4323660327 cites W3092318747 @default.
- W4323660327 cites W3116430925 @default.
- W4323660327 cites W3133206610 @default.
- W4323660327 cites W3137429615 @default.
- W4323660327 cites W3163884553 @default.
- W4323660327 cites W3169244563 @default.
- W4323660327 cites W3172019623 @default.
- W4323660327 cites W3201096577 @default.
- W4323660327 cites W4212768503 @default.
- W4323660327 cites W4306152347 @default.
- W4323660327 cites W4319790071 @default.
- W4323660327 cites W848293733 @default.
- W4323660327 cites W2158766150 @default.
- W4323660327 doi "https://doi.org/10.21203/rs.3.rs-2600302/v1" @default.
- W4323660327 hasPublicationYear "2023" @default.
- W4323660327 type Work @default.
- W4323660327 citedByCount "1" @default.
- W4323660327 countsByYear W43236603272023 @default.
- W4323660327 crossrefType "posted-content" @default.
- W4323660327 hasAuthorship W4323660327A5011035182 @default.
- W4323660327 hasAuthorship W4323660327A5016315589 @default.
- W4323660327 hasAuthorship W4323660327A5024263540 @default.
- W4323660327 hasAuthorship W4323660327A5059823880 @default.
- W4323660327 hasConcept C105795698 @default.
- W4323660327 hasConcept C119857082 @default.
- W4323660327 hasConcept C12267149 @default.
- W4323660327 hasConcept C127413603 @default.
- W4323660327 hasConcept C150772632 @default.
- W4323660327 hasConcept C152877465 @default.
- W4323660327 hasConcept C153294291 @default.
- W4323660327 hasConcept C158960510 @default.
- W4323660327 hasConcept C161067210 @default.
- W4323660327 hasConcept C169258074 @default.
- W4323660327 hasConcept C176783924 @default.
- W4323660327 hasConcept C187320778 @default.
- W4323660327 hasConcept C18903297 @default.