Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323662809> ?p ?o ?g. }
- W4323662809 endingPage "107008" @default.
- W4323662809 startingPage "107008" @default.
- W4323662809 abstract "A framework for creating and updating digital twins for dynamical systems from a library of physics-based functions is proposed. The sparse Bayesian machine learning is used to update and derive an interpretable expression for the digital twin. Two approaches for updating the digital twin are proposed. The first approach makes use of both the input and output information from a dynamical system, whereas the second approach utilizes output-only observations to update the digital twin. Both methods use a library of candidate functions representing certain physics to infer new perturbation terms in the existing digital twin model. In both cases, the resulting expressions of updated digital twins are identical, and in addition, the epistemic uncertainties are quantified. In the first approach, the regression problem is derived from a state-space model, whereas in the latter case, the output-only information is treated as a stochastic process. The concepts of Itô calculus and Kramers-Moyal expansion are being utilized to derive the regression equation. The performance of the proposed approaches is demonstrated using highly nonlinear dynamical systems such as the crack-degradation problem. Numerical results demonstrated in this paper almost exactly identify the correct perturbation terms along with their associated parameters in the dynamical system. The probabilistic nature of the proposed approach also helps in quantifying the uncertainties associated with updated models. The proposed approaches provide an exact and explainable description of the perturbations in digital twin models, which can be directly used for better cyber-physical integration, long-term future predictions, degradation monitoring, and model-agnostic control." @default.
- W4323662809 created "2023-03-10" @default.
- W4323662809 creator A5004875495 @default.
- W4323662809 creator A5007121098 @default.
- W4323662809 creator A5030664714 @default.
- W4323662809 creator A5065037343 @default.
- W4323662809 date "2023-06-01" @default.
- W4323662809 modified "2023-10-18" @default.
- W4323662809 title "Probabilistic machine learning based predictive and interpretable digital twin for dynamical systems" @default.
- W4323662809 cites W1999974018 @default.
- W4323662809 cites W2047355416 @default.
- W4323662809 cites W2108366027 @default.
- W4323662809 cites W2346505350 @default.
- W4323662809 cites W2579850834 @default.
- W4323662809 cites W2782812883 @default.
- W4323662809 cites W2792233253 @default.
- W4323662809 cites W2794202219 @default.
- W4323662809 cites W2904138018 @default.
- W4323662809 cites W2907864265 @default.
- W4323662809 cites W2910597635 @default.
- W4323662809 cites W2933878133 @default.
- W4323662809 cites W2966906878 @default.
- W4323662809 cites W2973231164 @default.
- W4323662809 cites W2975876537 @default.
- W4323662809 cites W2997121960 @default.
- W4323662809 cites W2998847955 @default.
- W4323662809 cites W3003895975 @default.
- W4323662809 cites W3009005414 @default.
- W4323662809 cites W3012041784 @default.
- W4323662809 cites W3022903720 @default.
- W4323662809 cites W3022972893 @default.
- W4323662809 cites W3025923312 @default.
- W4323662809 cites W3038821924 @default.
- W4323662809 cites W3089933773 @default.
- W4323662809 cites W3094607639 @default.
- W4323662809 cites W3107483701 @default.
- W4323662809 cites W3115726903 @default.
- W4323662809 cites W3164800436 @default.
- W4323662809 cites W3196645065 @default.
- W4323662809 cites W3210368639 @default.
- W4323662809 cites W4283640726 @default.
- W4323662809 cites W4309769245 @default.
- W4323662809 cites W4311988656 @default.
- W4323662809 cites W4318344212 @default.
- W4323662809 doi "https://doi.org/10.1016/j.compstruc.2023.107008" @default.
- W4323662809 hasPublicationYear "2023" @default.
- W4323662809 type Work @default.
- W4323662809 citedByCount "5" @default.
- W4323662809 countsByYear W43236628092023 @default.
- W4323662809 crossrefType "journal-article" @default.
- W4323662809 hasAuthorship W4323662809A5004875495 @default.
- W4323662809 hasAuthorship W4323662809A5007121098 @default.
- W4323662809 hasAuthorship W4323662809A5030664714 @default.
- W4323662809 hasAuthorship W4323662809A5065037343 @default.
- W4323662809 hasBestOaLocation W43236628092 @default.
- W4323662809 hasConcept C107673813 @default.
- W4323662809 hasConcept C11413529 @default.
- W4323662809 hasConcept C119857082 @default.
- W4323662809 hasConcept C121332964 @default.
- W4323662809 hasConcept C12267149 @default.
- W4323662809 hasConcept C154945302 @default.
- W4323662809 hasConcept C158622935 @default.
- W4323662809 hasConcept C177918212 @default.
- W4323662809 hasConcept C32230216 @default.
- W4323662809 hasConcept C33962884 @default.
- W4323662809 hasConcept C41008148 @default.
- W4323662809 hasConcept C49937458 @default.
- W4323662809 hasConcept C62520636 @default.
- W4323662809 hasConcept C79379906 @default.
- W4323662809 hasConceptScore W4323662809C107673813 @default.
- W4323662809 hasConceptScore W4323662809C11413529 @default.
- W4323662809 hasConceptScore W4323662809C119857082 @default.
- W4323662809 hasConceptScore W4323662809C121332964 @default.
- W4323662809 hasConceptScore W4323662809C12267149 @default.
- W4323662809 hasConceptScore W4323662809C154945302 @default.
- W4323662809 hasConceptScore W4323662809C158622935 @default.
- W4323662809 hasConceptScore W4323662809C177918212 @default.
- W4323662809 hasConceptScore W4323662809C32230216 @default.
- W4323662809 hasConceptScore W4323662809C33962884 @default.
- W4323662809 hasConceptScore W4323662809C41008148 @default.
- W4323662809 hasConceptScore W4323662809C49937458 @default.
- W4323662809 hasConceptScore W4323662809C62520636 @default.
- W4323662809 hasConceptScore W4323662809C79379906 @default.
- W4323662809 hasFunder F4320322724 @default.
- W4323662809 hasFunder F4320324473 @default.
- W4323662809 hasFunder F4320334771 @default.
- W4323662809 hasLocation W43236628091 @default.
- W4323662809 hasLocation W43236628092 @default.
- W4323662809 hasOpenAccess W4323662809 @default.
- W4323662809 hasPrimaryLocation W43236628091 @default.
- W4323662809 hasRelatedWork W2016990342 @default.
- W4323662809 hasRelatedWork W2068691058 @default.
- W4323662809 hasRelatedWork W2078952919 @default.
- W4323662809 hasRelatedWork W2089869689 @default.
- W4323662809 hasRelatedWork W2230606337 @default.
- W4323662809 hasRelatedWork W2377513064 @default.
- W4323662809 hasRelatedWork W2617651062 @default.
- W4323662809 hasRelatedWork W2945666329 @default.