Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323664314> ?p ?o ?g. }
- W4323664314 endingPage "783" @default.
- W4323664314 startingPage "783" @default.
- W4323664314 abstract "Canopy chlorophyll content (CCC) is closely related to crop nitrogen status, crop growth and productivity, detection of diseases and pests, and final yield. Thus, accurate monitoring of chlorophyll content in crops is of great significance for decision support in precision agriculture. In this study, winter wheat in the Guanzhong Plain area of the Shaanxi Province, China, was selected as the research subject to explore the feasibility of canopy spectral transformation (CST) combined with a machine learning method to estimate CCC. A hyperspectral canopy ground dataset in situ was measured to construct CCC prediction models for winter wheat over three growth seasons from 2014 to 2017. Sensitive-band reflectance (SR) and narrow-band spectral index (NSI) were established based on the original spectrum (OS) and CSTs, including the first derivative spectrum (FDS) and continuum removal spectrum (CRS). Winter wheat CCC estimation models were constructed using univariate regression, partial least squares (PLS) regression, and random forest (RF) regression based on SR and NSI. The results demonstrated the reliability of CST combined with the machine learning method to estimate winter wheat CCC. First, compared with OS-SR (683 nm), FDS-SR (630 nm) and CRS-SR (699 nm) had a larger correlation coefficient between canopy reflectance and CCC; secondly, among the parametric regression methods, the univariate regression method with CRS-NDSI as the independent variable achieved satisfactory results in estimating the CCC of winter wheat; thirdly, as a machine learning regression method, RF regression combined with multiple independent variables had the best winter wheat CCC estimation accuracy (the determination coefficient of the validation set (Rv2) was 0.88, the RMSE of the validation set (RMSEv) was 3.35 and relative prediction deviation (RPD) was 2.88). Thus, this modeling method could be used as a basic method to predict the CCC of winter wheat in the Guanzhong Plain area." @default.
- W4323664314 created "2023-03-10" @default.
- W4323664314 creator A5031386004 @default.
- W4323664314 creator A5035156137 @default.
- W4323664314 creator A5050725901 @default.
- W4323664314 creator A5060220945 @default.
- W4323664314 creator A5066828743 @default.
- W4323664314 creator A5081809406 @default.
- W4323664314 date "2023-03-08" @default.
- W4323664314 modified "2023-09-30" @default.
- W4323664314 title "Estimation of Winter Wheat Canopy Chlorophyll Content Based on Canopy Spectral Transformation and Machine Learning Method" @default.
- W4323664314 cites W1920908187 @default.
- W4323664314 cites W1969568499 @default.
- W4323664314 cites W1972392539 @default.
- W4323664314 cites W1986136566 @default.
- W4323664314 cites W1987097445 @default.
- W4323664314 cites W1996521921 @default.
- W4323664314 cites W1998767864 @default.
- W4323664314 cites W1999558009 @default.
- W4323664314 cites W2000097466 @default.
- W4323664314 cites W2001314765 @default.
- W4323664314 cites W2004741827 @default.
- W4323664314 cites W2026882925 @default.
- W4323664314 cites W2055563201 @default.
- W4323664314 cites W2067061329 @default.
- W4323664314 cites W2072254696 @default.
- W4323664314 cites W2073367262 @default.
- W4323664314 cites W2073424283 @default.
- W4323664314 cites W2073503722 @default.
- W4323664314 cites W2079842406 @default.
- W4323664314 cites W2080441468 @default.
- W4323664314 cites W2081728108 @default.
- W4323664314 cites W2089464686 @default.
- W4323664314 cites W2095993356 @default.
- W4323664314 cites W2099704405 @default.
- W4323664314 cites W2103184761 @default.
- W4323664314 cites W2109006150 @default.
- W4323664314 cites W2116730904 @default.
- W4323664314 cites W2128199995 @default.
- W4323664314 cites W2128438912 @default.
- W4323664314 cites W2140301981 @default.
- W4323664314 cites W2142222705 @default.
- W4323664314 cites W2142649963 @default.
- W4323664314 cites W2149604334 @default.
- W4323664314 cites W2150202143 @default.
- W4323664314 cites W2159961845 @default.
- W4323664314 cites W2168705867 @default.
- W4323664314 cites W2565157507 @default.
- W4323664314 cites W2600798029 @default.
- W4323664314 cites W2613366256 @default.
- W4323664314 cites W2784201940 @default.
- W4323664314 cites W2911595297 @default.
- W4323664314 cites W2911964244 @default.
- W4323664314 cites W2918084323 @default.
- W4323664314 cites W2935876239 @default.
- W4323664314 cites W2948615590 @default.
- W4323664314 cites W2963235971 @default.
- W4323664314 cites W2989221772 @default.
- W4323664314 cites W3006747363 @default.
- W4323664314 cites W3016217983 @default.
- W4323664314 cites W3016734049 @default.
- W4323664314 cites W3048255174 @default.
- W4323664314 cites W3080532439 @default.
- W4323664314 cites W3081857359 @default.
- W4323664314 cites W3130959040 @default.
- W4323664314 cites W3146257408 @default.
- W4323664314 cites W3188939116 @default.
- W4323664314 cites W3196967960 @default.
- W4323664314 cites W3206966913 @default.
- W4323664314 cites W4200360302 @default.
- W4323664314 cites W4200412506 @default.
- W4323664314 cites W4206254883 @default.
- W4323664314 cites W4229371457 @default.
- W4323664314 cites W4282552411 @default.
- W4323664314 cites W4320523694 @default.
- W4323664314 doi "https://doi.org/10.3390/agronomy13030783" @default.
- W4323664314 hasPublicationYear "2023" @default.
- W4323664314 type Work @default.
- W4323664314 citedByCount "3" @default.
- W4323664314 countsByYear W43236643142023 @default.
- W4323664314 crossrefType "journal-article" @default.
- W4323664314 hasAuthorship W4323664314A5031386004 @default.
- W4323664314 hasAuthorship W4323664314A5035156137 @default.
- W4323664314 hasAuthorship W4323664314A5050725901 @default.
- W4323664314 hasAuthorship W4323664314A5060220945 @default.
- W4323664314 hasAuthorship W4323664314A5066828743 @default.
- W4323664314 hasAuthorship W4323664314A5081809406 @default.
- W4323664314 hasBestOaLocation W43236643141 @default.
- W4323664314 hasConcept C101000010 @default.
- W4323664314 hasConcept C105795698 @default.
- W4323664314 hasConcept C152877465 @default.
- W4323664314 hasConcept C159078339 @default.
- W4323664314 hasConcept C161584116 @default.
- W4323664314 hasConcept C199163554 @default.
- W4323664314 hasConcept C205649164 @default.
- W4323664314 hasConcept C22354355 @default.
- W4323664314 hasConcept C33923547 @default.
- W4323664314 hasConcept C39432304 @default.