Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323670211> ?p ?o ?g. }
- W4323670211 endingPage "136742" @default.
- W4323670211 startingPage "136742" @default.
- W4323670211 abstract "Due to the excellent energy-saving and environmental protection features, electric vehicles (EVs) are gaining significant market penetration, especially in densely populated urban areas with systemic air quality problems. What follows is that we will face one of the biggest challenges: how to accurately predict the energy consumption (EC) of electric vehicles to alleviate the ‘range anxiety’ problem. To address this problem, this paper proposes a hybrid approach using short-trip segment division (S-TSD) algorithm and deep neural network (DNN) for predicting the energy consumption of battery electric vehicles (BEVs) by using real-world driving datasets. In this study, we aim to accurately predict energy consumption at the short-trip level, so we propose a novel S-TSD algorithm to divide the driving process of BEVs into several driving segments and conduct feature extraction for each segment. Then, using the extracted features, we develop a series of DNN models with varying hidden layers to investigate the respective performance for EC predictions. The results show that the optimal number of hidden layers is identified as 5, and the neuron structure for each hidden layer is determined as 13×256, 256×512, 512×256, 256×128, and 128×1, respectively. Two state-of-art models are selected as benchmark methods to compare with the proposed model for the EC prediction tasks. The comparative analyses suggest that the proposed model outperforms the benchmark methods in terms of the four index values of MAE, MAPE, MSE, and RMSE, indicating that the proposed model has a good performance for predicting the energy consumption of BEVs at a short-trip level." @default.
- W4323670211 created "2023-03-10" @default.
- W4323670211 creator A5013502134 @default.
- W4323670211 creator A5036715884 @default.
- W4323670211 creator A5064960363 @default.
- W4323670211 date "2023-05-01" @default.
- W4323670211 modified "2023-09-23" @default.
- W4323670211 title "Development of an energy consumption prediction model for battery electric vehicles in real-world driving: A combined approach of short-trip segment division and deep learning" @default.
- W4323670211 cites W1572996312 @default.
- W4323670211 cites W2016087887 @default.
- W4323670211 cites W2040839852 @default.
- W4323670211 cites W2046668770 @default.
- W4323670211 cites W2087167535 @default.
- W4323670211 cites W2088849001 @default.
- W4323670211 cites W2183715205 @default.
- W4323670211 cites W2260322208 @default.
- W4323670211 cites W2276973678 @default.
- W4323670211 cites W2410644873 @default.
- W4323670211 cites W2528305538 @default.
- W4323670211 cites W2551377934 @default.
- W4323670211 cites W2604319603 @default.
- W4323670211 cites W2611422988 @default.
- W4323670211 cites W2657631929 @default.
- W4323670211 cites W2747167073 @default.
- W4323670211 cites W2750138544 @default.
- W4323670211 cites W2787723628 @default.
- W4323670211 cites W2793888044 @default.
- W4323670211 cites W2804695053 @default.
- W4323670211 cites W2885578090 @default.
- W4323670211 cites W2898088104 @default.
- W4323670211 cites W2903624615 @default.
- W4323670211 cites W2910125189 @default.
- W4323670211 cites W2914110112 @default.
- W4323670211 cites W2948490758 @default.
- W4323670211 cites W2959032775 @default.
- W4323670211 cites W2962690195 @default.
- W4323670211 cites W3000237001 @default.
- W4323670211 cites W3026805794 @default.
- W4323670211 cites W3035785571 @default.
- W4323670211 cites W3087726334 @default.
- W4323670211 cites W3106064248 @default.
- W4323670211 cites W3128590715 @default.
- W4323670211 cites W3171560357 @default.
- W4323670211 cites W3202914192 @default.
- W4323670211 cites W4221004038 @default.
- W4323670211 cites W4281927531 @default.
- W4323670211 cites W4306871706 @default.
- W4323670211 cites W587029215 @default.
- W4323670211 cites W932531772 @default.
- W4323670211 doi "https://doi.org/10.1016/j.jclepro.2023.136742" @default.
- W4323670211 hasPublicationYear "2023" @default.
- W4323670211 type Work @default.
- W4323670211 citedByCount "1" @default.
- W4323670211 countsByYear W43236702112023 @default.
- W4323670211 crossrefType "journal-article" @default.
- W4323670211 hasAuthorship W4323670211A5013502134 @default.
- W4323670211 hasAuthorship W4323670211A5036715884 @default.
- W4323670211 hasAuthorship W4323670211A5064960363 @default.
- W4323670211 hasConcept C105795698 @default.
- W4323670211 hasConcept C108583219 @default.
- W4323670211 hasConcept C119599485 @default.
- W4323670211 hasConcept C127413603 @default.
- W4323670211 hasConcept C13280743 @default.
- W4323670211 hasConcept C139945424 @default.
- W4323670211 hasConcept C146978453 @default.
- W4323670211 hasConcept C154945302 @default.
- W4323670211 hasConcept C185798385 @default.
- W4323670211 hasConcept C204323151 @default.
- W4323670211 hasConcept C205649164 @default.
- W4323670211 hasConcept C2780165032 @default.
- W4323670211 hasConcept C33923547 @default.
- W4323670211 hasConcept C41008148 @default.
- W4323670211 hasConcept C50644808 @default.
- W4323670211 hasConcept C60798267 @default.
- W4323670211 hasConcept C94375191 @default.
- W4323670211 hasConceptScore W4323670211C105795698 @default.
- W4323670211 hasConceptScore W4323670211C108583219 @default.
- W4323670211 hasConceptScore W4323670211C119599485 @default.
- W4323670211 hasConceptScore W4323670211C127413603 @default.
- W4323670211 hasConceptScore W4323670211C13280743 @default.
- W4323670211 hasConceptScore W4323670211C139945424 @default.
- W4323670211 hasConceptScore W4323670211C146978453 @default.
- W4323670211 hasConceptScore W4323670211C154945302 @default.
- W4323670211 hasConceptScore W4323670211C185798385 @default.
- W4323670211 hasConceptScore W4323670211C204323151 @default.
- W4323670211 hasConceptScore W4323670211C205649164 @default.
- W4323670211 hasConceptScore W4323670211C2780165032 @default.
- W4323670211 hasConceptScore W4323670211C33923547 @default.
- W4323670211 hasConceptScore W4323670211C41008148 @default.
- W4323670211 hasConceptScore W4323670211C50644808 @default.
- W4323670211 hasConceptScore W4323670211C60798267 @default.
- W4323670211 hasConceptScore W4323670211C94375191 @default.
- W4323670211 hasFunder F4320324173 @default.
- W4323670211 hasFunder F4320328119 @default.
- W4323670211 hasFunder F4320335787 @default.
- W4323670211 hasLocation W43236702111 @default.
- W4323670211 hasOpenAccess W4323670211 @default.
- W4323670211 hasPrimaryLocation W43236702111 @default.