Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323768081> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4323768081 endingPage "993" @default.
- W4323768081 startingPage "981" @default.
- W4323768081 abstract "Fast and accurate localization for unmanned aerial vehicle (UAV) navigation could avoid hazards when GPS is unavailable. A vision-based global positioning system is developed for UAV by means of satellite images from Google Map as reference. In this system, an ultra-robust and fast feature correspondence algorithm, called Grid-based motion statistics (GMS), is utilized for scene matching. GMS’s performance is comparable to the techniques many orders of magnitude slower, and it maintains high speed as the fast algorithms. A Least Median Square improved GMS algorithm (LMedS-GMS) is developed which is employed to solve the matching failure of the original GMS in challenging scenarios. Moreover, a robust filtering localization approach combining the random sample consensus algorithm (RANSAC) and the proposed LMedS-GMS is designed for locating the position of an UAV. Finally, a vision-based global positioning architecture is proposed using this method with the altitude and direction information from the airborne sensors. Experimental results based on offline data demonstrate that the proposed algorithm is superior to state-of-the-art methods in the accuracy and real-time performance." @default.
- W4323768081 created "2023-03-11" @default.
- W4323768081 creator A5020603910 @default.
- W4323768081 creator A5032364203 @default.
- W4323768081 creator A5044526651 @default.
- W4323768081 creator A5067323592 @default.
- W4323768081 date "2023-01-01" @default.
- W4323768081 modified "2023-09-27" @default.
- W4323768081 title "Vision-Based Global Positioning System Using Improved GMS Algorithm for a UAV" @default.
- W4323768081 cites W166547715 @default.
- W4323768081 cites W1964715412 @default.
- W4323768081 cites W2058220625 @default.
- W4323768081 cites W2071093471 @default.
- W4323768081 cites W2078304098 @default.
- W4323768081 cites W2080847345 @default.
- W4323768081 cites W2091347416 @default.
- W4323768081 cites W2125240024 @default.
- W4323768081 cites W2132453268 @default.
- W4323768081 cites W2136801456 @default.
- W4323768081 cites W2147083891 @default.
- W4323768081 cites W2154422147 @default.
- W4323768081 cites W2560216485 @default.
- W4323768081 cites W2754925132 @default.
- W4323768081 cites W2905911711 @default.
- W4323768081 cites W3103648783 @default.
- W4323768081 doi "https://doi.org/10.1007/978-981-99-0479-2_89" @default.
- W4323768081 hasPublicationYear "2023" @default.
- W4323768081 type Work @default.
- W4323768081 citedByCount "0" @default.
- W4323768081 crossrefType "book-chapter" @default.
- W4323768081 hasAuthorship W4323768081A5020603910 @default.
- W4323768081 hasAuthorship W4323768081A5032364203 @default.
- W4323768081 hasAuthorship W4323768081A5044526651 @default.
- W4323768081 hasAuthorship W4323768081A5067323592 @default.
- W4323768081 hasConcept C10138342 @default.
- W4323768081 hasConcept C105795698 @default.
- W4323768081 hasConcept C11413529 @default.
- W4323768081 hasConcept C114744707 @default.
- W4323768081 hasConcept C115961682 @default.
- W4323768081 hasConcept C138885662 @default.
- W4323768081 hasConcept C154945302 @default.
- W4323768081 hasConcept C162324750 @default.
- W4323768081 hasConcept C165064840 @default.
- W4323768081 hasConcept C198082294 @default.
- W4323768081 hasConcept C2776401178 @default.
- W4323768081 hasConcept C31972630 @default.
- W4323768081 hasConcept C33923547 @default.
- W4323768081 hasConcept C41008148 @default.
- W4323768081 hasConcept C41895202 @default.
- W4323768081 hasConcept C60229501 @default.
- W4323768081 hasConcept C76155785 @default.
- W4323768081 hasConcept C79403827 @default.
- W4323768081 hasConceptScore W4323768081C10138342 @default.
- W4323768081 hasConceptScore W4323768081C105795698 @default.
- W4323768081 hasConceptScore W4323768081C11413529 @default.
- W4323768081 hasConceptScore W4323768081C114744707 @default.
- W4323768081 hasConceptScore W4323768081C115961682 @default.
- W4323768081 hasConceptScore W4323768081C138885662 @default.
- W4323768081 hasConceptScore W4323768081C154945302 @default.
- W4323768081 hasConceptScore W4323768081C162324750 @default.
- W4323768081 hasConceptScore W4323768081C165064840 @default.
- W4323768081 hasConceptScore W4323768081C198082294 @default.
- W4323768081 hasConceptScore W4323768081C2776401178 @default.
- W4323768081 hasConceptScore W4323768081C31972630 @default.
- W4323768081 hasConceptScore W4323768081C33923547 @default.
- W4323768081 hasConceptScore W4323768081C41008148 @default.
- W4323768081 hasConceptScore W4323768081C41895202 @default.
- W4323768081 hasConceptScore W4323768081C60229501 @default.
- W4323768081 hasConceptScore W4323768081C76155785 @default.
- W4323768081 hasConceptScore W4323768081C79403827 @default.
- W4323768081 hasLocation W43237680811 @default.
- W4323768081 hasOpenAccess W4323768081 @default.
- W4323768081 hasPrimaryLocation W43237680811 @default.
- W4323768081 hasRelatedWork W2069595590 @default.
- W4323768081 hasRelatedWork W2138951639 @default.
- W4323768081 hasRelatedWork W2273631522 @default.
- W4323768081 hasRelatedWork W2324773348 @default.
- W4323768081 hasRelatedWork W2534241235 @default.
- W4323768081 hasRelatedWork W2534909612 @default.
- W4323768081 hasRelatedWork W2553945284 @default.
- W4323768081 hasRelatedWork W2554642673 @default.
- W4323768081 hasRelatedWork W2556487506 @default.
- W4323768081 hasRelatedWork W2786306966 @default.
- W4323768081 isParatext "false" @default.
- W4323768081 isRetracted "false" @default.
- W4323768081 workType "book-chapter" @default.