Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323825318> ?p ?o ?g. }
- W4323825318 abstract "Abstract Objectives Type 2 diabetes mellitus (T2DM) imposes a great burden on healthcare systems, and these patients experience higher long-term risks for developing end-stage renal disease (ESRD). Managing diabetic nephropathy becomes more challenging when kidney function starts declining. Therefore, developing predictive models for the risk of developing ESRD in newly diagnosed T2DM patients may be helpful in clinical settings. Methods We established machine learning models constructed from a subset of clinical features collected from 53,477 newly diagnosed T2DM patients from January 2008 to December 2018 and then selected the best model. The cohort was divided, with 70% and 30% of patients randomly assigned to the training and testing sets, respectively. Results The discriminative ability of our machine learning models, including logistic regression, extra tree classifier, random forest, gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and light gradient boosting machine were evaluated across the cohort. XGBoost yielded the highest area under the receiver operating characteristic curve (AUC) of 0.953, followed by extra tree and GBDT, with AUC values of 0.952 and 0.938 on the testing dataset. The SHapley Additive explanation summary plot in the XGBoost model illustrated that the top five important features included baseline serum creatinine, mean serum creatine within 1 year before the diagnosis of T2DM, high-sensitivity C-reactive protein, spot urine protein-to-creatinine ratio and female gender. Conclusions Because our machine learning prediction models were based on routinely collected clinical features, they can be used as risk assessment tools for developing ESRD. By identifying high-risk patients, intervention strategies may be provided at an early stage." @default.
- W4323825318 created "2023-03-11" @default.
- W4323825318 creator A5002538444 @default.
- W4323825318 creator A5003694456 @default.
- W4323825318 creator A5007691326 @default.
- W4323825318 creator A5020412154 @default.
- W4323825318 creator A5026261396 @default.
- W4323825318 creator A5031812511 @default.
- W4323825318 creator A5033207050 @default.
- W4323825318 creator A5036820200 @default.
- W4323825318 creator A5051760777 @default.
- W4323825318 creator A5059739856 @default.
- W4323825318 creator A5061828328 @default.
- W4323825318 creator A5074902886 @default.
- W4323825318 date "2023-03-10" @default.
- W4323825318 modified "2023-10-06" @default.
- W4323825318 title "Prediction of the risk of developing end-stage renal diseases in newly diagnosed type 2 diabetes mellitus using artificial intelligence algorithms" @default.
- W4323825318 cites W1523778995 @default.
- W4323825318 cites W1976274212 @default.
- W4323825318 cites W1997932141 @default.
- W4323825318 cites W2000515020 @default.
- W4323825318 cites W2045279107 @default.
- W4323825318 cites W2046303127 @default.
- W4323825318 cites W2047319795 @default.
- W4323825318 cites W2054630908 @default.
- W4323825318 cites W2088794999 @default.
- W4323825318 cites W2096607633 @default.
- W4323825318 cites W2107412805 @default.
- W4323825318 cites W2155965977 @default.
- W4323825318 cites W2156616731 @default.
- W4323825318 cites W2159843374 @default.
- W4323825318 cites W2266397314 @default.
- W4323825318 cites W2289481372 @default.
- W4323825318 cites W2418989519 @default.
- W4323825318 cites W2464795325 @default.
- W4323825318 cites W24674184 @default.
- W4323825318 cites W2481243666 @default.
- W4323825318 cites W2543885274 @default.
- W4323825318 cites W2583177258 @default.
- W4323825318 cites W2586575683 @default.
- W4323825318 cites W2596627175 @default.
- W4323825318 cites W2607031541 @default.
- W4323825318 cites W2614954497 @default.
- W4323825318 cites W2620177047 @default.
- W4323825318 cites W2663448857 @default.
- W4323825318 cites W2797921208 @default.
- W4323825318 cites W2911443174 @default.
- W4323825318 cites W2914508750 @default.
- W4323825318 cites W2922579477 @default.
- W4323825318 cites W2940596626 @default.
- W4323825318 cites W2958037988 @default.
- W4323825318 cites W2959666995 @default.
- W4323825318 cites W2968847082 @default.
- W4323825318 cites W3010797262 @default.
- W4323825318 cites W3024017681 @default.
- W4323825318 cites W3048145828 @default.
- W4323825318 cites W3083111480 @default.
- W4323825318 cites W3085149612 @default.
- W4323825318 cites W3095595608 @default.
- W4323825318 cites W3112948313 @default.
- W4323825318 cites W3119358510 @default.
- W4323825318 cites W3183592839 @default.
- W4323825318 cites W3215922044 @default.
- W4323825318 cites W4226516735 @default.
- W4323825318 cites W4243150065 @default.
- W4323825318 cites W4292121846 @default.
- W4323825318 cites W4297225617 @default.
- W4323825318 cites W4298144215 @default.
- W4323825318 cites W4306361675 @default.
- W4323825318 doi "https://doi.org/10.1186/s13040-023-00324-2" @default.
- W4323825318 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36899426" @default.
- W4323825318 hasPublicationYear "2023" @default.
- W4323825318 type Work @default.
- W4323825318 citedByCount "2" @default.
- W4323825318 countsByYear W43238253182023 @default.
- W4323825318 crossrefType "journal-article" @default.
- W4323825318 hasAuthorship W4323825318A5002538444 @default.
- W4323825318 hasAuthorship W4323825318A5003694456 @default.
- W4323825318 hasAuthorship W4323825318A5007691326 @default.
- W4323825318 hasAuthorship W4323825318A5020412154 @default.
- W4323825318 hasAuthorship W4323825318A5026261396 @default.
- W4323825318 hasAuthorship W4323825318A5031812511 @default.
- W4323825318 hasAuthorship W4323825318A5033207050 @default.
- W4323825318 hasAuthorship W4323825318A5036820200 @default.
- W4323825318 hasAuthorship W4323825318A5051760777 @default.
- W4323825318 hasAuthorship W4323825318A5059739856 @default.
- W4323825318 hasAuthorship W4323825318A5061828328 @default.
- W4323825318 hasAuthorship W4323825318A5074902886 @default.
- W4323825318 hasBestOaLocation W43238253181 @default.
- W4323825318 hasConcept C11413529 @default.
- W4323825318 hasConcept C119857082 @default.
- W4323825318 hasConcept C126322002 @default.
- W4323825318 hasConcept C134018914 @default.
- W4323825318 hasConcept C151956035 @default.
- W4323825318 hasConcept C154945302 @default.
- W4323825318 hasConcept C159641895 @default.
- W4323825318 hasConcept C169258074 @default.
- W4323825318 hasConcept C2778653478 @default.
- W4323825318 hasConcept C2780306776 @default.
- W4323825318 hasConcept C2910068830 @default.