Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323842603> ?p ?o ?g. }
- W4323842603 endingPage "503" @default.
- W4323842603 startingPage "503" @default.
- W4323842603 abstract "Molecular property prediction is an important direction in computer-aided drug design. In this paper, to fully explore the information from SMILE stings and graph data of molecules, we combined the SALSTM and GAT methods in order to mine the feature information of molecules from sequences and graphs. The embedding atoms are obtained through SALSTM, firstly using SMILES strings, and they are combined with graph node features and fed into the GAT to extract the global molecular representation. At the same time, data augmentation is added to enlarge the training dataset and improve the performance of the model. Finally, to enhance the interpretability of the model, the attention layers of both models are fused together to highlight the key atoms. Comparison with other graph-based and sequence-based methods, for multiple datasets, shows that our method can achieve high prediction accuracy with good generalizability." @default.
- W4323842603 created "2023-03-11" @default.
- W4323842603 creator A5039816737 @default.
- W4323842603 creator A5042358107 @default.
- W4323842603 creator A5072206276 @default.
- W4323842603 creator A5075301633 @default.
- W4323842603 date "2023-03-09" @default.
- W4323842603 modified "2023-09-30" @default.
- W4323842603 title "Molecular Property Prediction by Combining LSTM and GAT" @default.
- W4323842603 cites W1974674068 @default.
- W4323842603 cites W2008505552 @default.
- W4323842603 cites W2027349434 @default.
- W4323842603 cites W2076498053 @default.
- W4323842603 cites W2079919922 @default.
- W4323842603 cites W2097559461 @default.
- W4323842603 cites W2461470610 @default.
- W4323842603 cites W2578240541 @default.
- W4323842603 cites W2594183968 @default.
- W4323842603 cites W2749279690 @default.
- W4323842603 cites W2774216375 @default.
- W4323842603 cites W2777416523 @default.
- W4323842603 cites W2791796577 @default.
- W4323842603 cites W2798749466 @default.
- W4323842603 cites W2914757825 @default.
- W4323842603 cites W2943890584 @default.
- W4323842603 cites W2948035163 @default.
- W4323842603 cites W2962876364 @default.
- W4323842603 cites W2963017945 @default.
- W4323842603 cites W2966357564 @default.
- W4323842603 cites W2968734407 @default.
- W4323842603 cites W2969457089 @default.
- W4323842603 cites W2989615256 @default.
- W4323842603 cites W3014691264 @default.
- W4323842603 cites W3021747854 @default.
- W4323842603 cites W3025783112 @default.
- W4323842603 cites W3049758432 @default.
- W4323842603 cites W3094060150 @default.
- W4323842603 cites W3112417367 @default.
- W4323842603 cites W3124861950 @default.
- W4323842603 cites W3127347132 @default.
- W4323842603 cites W3131648425 @default.
- W4323842603 cites W3134616030 @default.
- W4323842603 cites W3139660573 @default.
- W4323842603 cites W3163493952 @default.
- W4323842603 cites W3174224323 @default.
- W4323842603 cites W3176980311 @default.
- W4323842603 cites W3187647935 @default.
- W4323842603 cites W3194292290 @default.
- W4323842603 cites W3196214900 @default.
- W4323842603 cites W3198168376 @default.
- W4323842603 cites W3198242498 @default.
- W4323842603 cites W3201829457 @default.
- W4323842603 cites W3217248762 @default.
- W4323842603 cites W3217253223 @default.
- W4323842603 cites W3217751816 @default.
- W4323842603 cites W4200319408 @default.
- W4323842603 cites W4210737721 @default.
- W4323842603 cites W4213269078 @default.
- W4323842603 cites W4220837717 @default.
- W4323842603 cites W4237622019 @default.
- W4323842603 cites W4285802751 @default.
- W4323842603 cites W4293812567 @default.
- W4323842603 cites W4297179162 @default.
- W4323842603 cites W4297996736 @default.
- W4323842603 cites W4308988941 @default.
- W4323842603 doi "https://doi.org/10.3390/biom13030503" @default.
- W4323842603 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36979438" @default.
- W4323842603 hasPublicationYear "2023" @default.
- W4323842603 type Work @default.
- W4323842603 citedByCount "2" @default.
- W4323842603 countsByYear W43238426032023 @default.
- W4323842603 crossrefType "journal-article" @default.
- W4323842603 hasAuthorship W4323842603A5039816737 @default.
- W4323842603 hasAuthorship W4323842603A5042358107 @default.
- W4323842603 hasAuthorship W4323842603A5072206276 @default.
- W4323842603 hasAuthorship W4323842603A5075301633 @default.
- W4323842603 hasBestOaLocation W43238426031 @default.
- W4323842603 hasConcept C105795698 @default.
- W4323842603 hasConcept C111472728 @default.
- W4323842603 hasConcept C11413529 @default.
- W4323842603 hasConcept C119857082 @default.
- W4323842603 hasConcept C124101348 @default.
- W4323842603 hasConcept C132525143 @default.
- W4323842603 hasConcept C138885662 @default.
- W4323842603 hasConcept C153180895 @default.
- W4323842603 hasConcept C154945302 @default.
- W4323842603 hasConcept C17744445 @default.
- W4323842603 hasConcept C189950617 @default.
- W4323842603 hasConcept C199539241 @default.
- W4323842603 hasConcept C27158222 @default.
- W4323842603 hasConcept C2776359362 @default.
- W4323842603 hasConcept C2776401178 @default.
- W4323842603 hasConcept C2780022179 @default.
- W4323842603 hasConcept C2781067378 @default.
- W4323842603 hasConcept C33923547 @default.
- W4323842603 hasConcept C41008148 @default.
- W4323842603 hasConcept C41608201 @default.
- W4323842603 hasConcept C41895202 @default.