Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323849306> ?p ?o ?g. }
- W4323849306 endingPage "1306" @default.
- W4323849306 startingPage "1306" @default.
- W4323849306 abstract "In road networks, attribute information carried by road segment nodes, such as weather and points of interest (POI), exhibit strong heterogeneity and often involve one-to-many or many-to-one relationships. However, research on such heterogeneity in traffic prediction is relatively limited. Our research examines how varying the network propagation pattern based on the degree of node-to-node heterogeneity of information affects the model prediction performance. Specifically, at the node level, we use knowledge embedding to generate knowledge vectors that quantify the heterogeneity among the attribute information of a node. At the road network level, we calculate a homogeneity adjacency matrix that captures both the topological structure of the road network and the similarity of node heterogeneity. This adjacency matrix assigns different weights to neighbors based on their homogeneity, guiding the propagation of graph convolutional networks (GCN). Finally, we separate the representation of propagation into self-representation and neighbor representation to extract multi-attribute information, including self, homogeneity, and heterogeneity. Experiments on real datasets demonstrate that the incorporation of our homogeneity adjacency matrix leads to a significant improvement in the accuracy of short-term and long-term prediction compared with previous work on homogeneous and single-dimensional information. Furthermore, our approach maintains its performance advantage over baseline models under different embedding dimensions and parameter settings." @default.
- W4323849306 created "2023-03-11" @default.
- W4323849306 creator A5002547450 @default.
- W4323849306 creator A5030323127 @default.
- W4323849306 creator A5048072298 @default.
- W4323849306 creator A5048752035 @default.
- W4323849306 creator A5065091757 @default.
- W4323849306 date "2023-03-09" @default.
- W4323849306 modified "2023-10-14" @default.
- W4323849306 title "HIT-GCN: Spatial-Temporal Graph Convolutional Network Embedded with Heterogeneous Information of Road Network for Traffic Forecasting" @default.
- W4323849306 cites W17009997 @default.
- W4323849306 cites W2073587810 @default.
- W4323849306 cites W2138890315 @default.
- W4323849306 cites W2184957013 @default.
- W4323849306 cites W2250342289 @default.
- W4323849306 cites W2283196293 @default.
- W4323849306 cites W2433281745 @default.
- W4323849306 cites W2755146079 @default.
- W4323849306 cites W2766996256 @default.
- W4323849306 cites W2901504064 @default.
- W4323849306 cites W2963919031 @default.
- W4323849306 cites W2966398094 @default.
- W4323849306 cites W2968149264 @default.
- W4323849306 cites W3003265726 @default.
- W4323849306 cites W3015409108 @default.
- W4323849306 cites W3021393704 @default.
- W4323849306 cites W3035336738 @default.
- W4323849306 cites W3048922236 @default.
- W4323849306 cites W3106439716 @default.
- W4323849306 cites W3109074851 @default.
- W4323849306 cites W3133663379 @default.
- W4323849306 cites W3152893301 @default.
- W4323849306 cites W3164315505 @default.
- W4323849306 cites W3168857653 @default.
- W4323849306 cites W3172408309 @default.
- W4323849306 cites W3210037606 @default.
- W4323849306 cites W3216070494 @default.
- W4323849306 cites W4210257598 @default.
- W4323849306 cites W4211213044 @default.
- W4323849306 cites W4214908208 @default.
- W4323849306 cites W4292972809 @default.
- W4323849306 cites W4293168685 @default.
- W4323849306 cites W4293169056 @default.
- W4323849306 cites W4312055772 @default.
- W4323849306 doi "https://doi.org/10.3390/electronics12061306" @default.
- W4323849306 hasPublicationYear "2023" @default.
- W4323849306 type Work @default.
- W4323849306 citedByCount "0" @default.
- W4323849306 crossrefType "journal-article" @default.
- W4323849306 hasAuthorship W4323849306A5002547450 @default.
- W4323849306 hasAuthorship W4323849306A5030323127 @default.
- W4323849306 hasAuthorship W4323849306A5048072298 @default.
- W4323849306 hasAuthorship W4323849306A5048752035 @default.
- W4323849306 hasAuthorship W4323849306A5065091757 @default.
- W4323849306 hasBestOaLocation W43238493061 @default.
- W4323849306 hasConcept C108037233 @default.
- W4323849306 hasConcept C110484373 @default.
- W4323849306 hasConcept C11413529 @default.
- W4323849306 hasConcept C119857082 @default.
- W4323849306 hasConcept C124101348 @default.
- W4323849306 hasConcept C132525143 @default.
- W4323849306 hasConcept C142259097 @default.
- W4323849306 hasConcept C154945302 @default.
- W4323849306 hasConcept C158207573 @default.
- W4323849306 hasConcept C17744445 @default.
- W4323849306 hasConcept C180356752 @default.
- W4323849306 hasConcept C199539241 @default.
- W4323849306 hasConcept C2776359362 @default.
- W4323849306 hasConcept C2993807640 @default.
- W4323849306 hasConcept C41008148 @default.
- W4323849306 hasConcept C41608201 @default.
- W4323849306 hasConcept C45374587 @default.
- W4323849306 hasConcept C555944384 @default.
- W4323849306 hasConcept C76155785 @default.
- W4323849306 hasConcept C80444323 @default.
- W4323849306 hasConcept C94625758 @default.
- W4323849306 hasConceptScore W4323849306C108037233 @default.
- W4323849306 hasConceptScore W4323849306C110484373 @default.
- W4323849306 hasConceptScore W4323849306C11413529 @default.
- W4323849306 hasConceptScore W4323849306C119857082 @default.
- W4323849306 hasConceptScore W4323849306C124101348 @default.
- W4323849306 hasConceptScore W4323849306C132525143 @default.
- W4323849306 hasConceptScore W4323849306C142259097 @default.
- W4323849306 hasConceptScore W4323849306C154945302 @default.
- W4323849306 hasConceptScore W4323849306C158207573 @default.
- W4323849306 hasConceptScore W4323849306C17744445 @default.
- W4323849306 hasConceptScore W4323849306C180356752 @default.
- W4323849306 hasConceptScore W4323849306C199539241 @default.
- W4323849306 hasConceptScore W4323849306C2776359362 @default.
- W4323849306 hasConceptScore W4323849306C2993807640 @default.
- W4323849306 hasConceptScore W4323849306C41008148 @default.
- W4323849306 hasConceptScore W4323849306C41608201 @default.
- W4323849306 hasConceptScore W4323849306C45374587 @default.
- W4323849306 hasConceptScore W4323849306C555944384 @default.
- W4323849306 hasConceptScore W4323849306C76155785 @default.
- W4323849306 hasConceptScore W4323849306C80444323 @default.
- W4323849306 hasConceptScore W4323849306C94625758 @default.
- W4323849306 hasFunder F4320321001 @default.