Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323896833> ?p ?o ?g. }
- W4323896833 endingPage "3796" @default.
- W4323896833 startingPage "3784" @default.
- W4323896833 abstract "High-speed link consisting of drivers and interconnects is essential for high-speed data transmission. In this article, a surrogate modeling technique based on graph neural network (GNN) and recurrent neural network (RNN) is proposed for signal integrity (SI) analysis of high-speed links with variable physical parameters and variable topologies. First, GNN extracts global features that can fully characterize components of the high-speed link from their topologies and physical parameters. Second, RNN takes the extracted global features and the excitation waveforms as inputs to predict the response waveforms. Finally, the well-trained GNN -RNN surrogate models of components of the high-speed link are cascaded as the entire surrogate model of the high-speed link. Numerical examples of the dri- ver model, the interconnect model, and the entire high-speed link model are provided for validation. It is shown that the proposed GNN -RNN surrogate models achieve low mean squared errors (MSEs), mean absolute errors (MAEs), and high efficiency." @default.
- W4323896833 created "2023-03-12" @default.
- W4323896833 creator A5002821370 @default.
- W4323896833 creator A5008814359 @default.
- W4323896833 creator A5039915846 @default.
- W4323896833 creator A5047006666 @default.
- W4323896833 creator A5086646606 @default.
- W4323896833 date "2023-09-01" @default.
- W4323896833 modified "2023-10-17" @default.
- W4323896833 title "Surrogate Modeling of High-Speed Links Based on GNN and RNN for Signal Integrity Applications" @default.
- W4323896833 cites W2112877014 @default.
- W4323896833 cites W2116663670 @default.
- W4323896833 cites W2144188877 @default.
- W4323896833 cites W2160219580 @default.
- W4323896833 cites W2164606483 @default.
- W4323896833 cites W2782731083 @default.
- W4323896833 cites W2810570104 @default.
- W4323896833 cites W2901508430 @default.
- W4323896833 cites W2922494440 @default.
- W4323896833 cites W2970229762 @default.
- W4323896833 cites W2972221160 @default.
- W4323896833 cites W2981773397 @default.
- W4323896833 cites W3012166292 @default.
- W4323896833 cites W3016848113 @default.
- W4323896833 cites W3103720336 @default.
- W4323896833 cites W3113090643 @default.
- W4323896833 cites W3126749518 @default.
- W4323896833 cites W3146559208 @default.
- W4323896833 cites W3199326711 @default.
- W4323896833 cites W3201203917 @default.
- W4323896833 cites W4293732148 @default.
- W4323896833 doi "https://doi.org/10.1109/tmtt.2023.3251658" @default.
- W4323896833 hasPublicationYear "2023" @default.
- W4323896833 type Work @default.
- W4323896833 citedByCount "0" @default.
- W4323896833 crossrefType "journal-article" @default.
- W4323896833 hasAuthorship W4323896833A5002821370 @default.
- W4323896833 hasAuthorship W4323896833A5008814359 @default.
- W4323896833 hasAuthorship W4323896833A5039915846 @default.
- W4323896833 hasAuthorship W4323896833A5047006666 @default.
- W4323896833 hasAuthorship W4323896833A5086646606 @default.
- W4323896833 hasConcept C111919701 @default.
- W4323896833 hasConcept C11413529 @default.
- W4323896833 hasConcept C119857082 @default.
- W4323896833 hasConcept C123745756 @default.
- W4323896833 hasConcept C127413603 @default.
- W4323896833 hasConcept C131675550 @default.
- W4323896833 hasConcept C134306372 @default.
- W4323896833 hasConcept C147168706 @default.
- W4323896833 hasConcept C154945302 @default.
- W4323896833 hasConcept C182365436 @default.
- W4323896833 hasConcept C197424946 @default.
- W4323896833 hasConcept C199845137 @default.
- W4323896833 hasConcept C24326235 @default.
- W4323896833 hasConcept C33923547 @default.
- W4323896833 hasConcept C41008148 @default.
- W4323896833 hasConcept C44938667 @default.
- W4323896833 hasConcept C50644808 @default.
- W4323896833 hasConcept C554190296 @default.
- W4323896833 hasConcept C76155785 @default.
- W4323896833 hasConceptScore W4323896833C111919701 @default.
- W4323896833 hasConceptScore W4323896833C11413529 @default.
- W4323896833 hasConceptScore W4323896833C119857082 @default.
- W4323896833 hasConceptScore W4323896833C123745756 @default.
- W4323896833 hasConceptScore W4323896833C127413603 @default.
- W4323896833 hasConceptScore W4323896833C131675550 @default.
- W4323896833 hasConceptScore W4323896833C134306372 @default.
- W4323896833 hasConceptScore W4323896833C147168706 @default.
- W4323896833 hasConceptScore W4323896833C154945302 @default.
- W4323896833 hasConceptScore W4323896833C182365436 @default.
- W4323896833 hasConceptScore W4323896833C197424946 @default.
- W4323896833 hasConceptScore W4323896833C199845137 @default.
- W4323896833 hasConceptScore W4323896833C24326235 @default.
- W4323896833 hasConceptScore W4323896833C33923547 @default.
- W4323896833 hasConceptScore W4323896833C41008148 @default.
- W4323896833 hasConceptScore W4323896833C44938667 @default.
- W4323896833 hasConceptScore W4323896833C50644808 @default.
- W4323896833 hasConceptScore W4323896833C554190296 @default.
- W4323896833 hasConceptScore W4323896833C76155785 @default.
- W4323896833 hasFunder F4320321001 @default.
- W4323896833 hasFunder F4320335777 @default.
- W4323896833 hasIssue "9" @default.
- W4323896833 hasLocation W43238968331 @default.
- W4323896833 hasOpenAccess W4323896833 @default.
- W4323896833 hasPrimaryLocation W43238968331 @default.
- W4323896833 hasRelatedWork W1520075683 @default.
- W4323896833 hasRelatedWork W1847088711 @default.
- W4323896833 hasRelatedWork W2347291799 @default.
- W4323896833 hasRelatedWork W2386114299 @default.
- W4323896833 hasRelatedWork W2953061907 @default.
- W4323896833 hasRelatedWork W3032952384 @default.
- W4323896833 hasRelatedWork W3034302643 @default.
- W4323896833 hasRelatedWork W3036642985 @default.
- W4323896833 hasRelatedWork W4225394202 @default.
- W4323896833 hasRelatedWork W4298287631 @default.
- W4323896833 hasVolume "71" @default.
- W4323896833 isParatext "false" @default.
- W4323896833 isRetracted "false" @default.