Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323913671> ?p ?o ?g. }
- W4323913671 endingPage "5" @default.
- W4323913671 startingPage "1" @default.
- W4323913671 abstract "Streaming Big Data applications require the means to efficiently utilize large-scale data in an online manner. This issue becomes even more pressing when data are also multidimensional, as is the case with quaternion data streams. To this end, we first introduce the online censoring (OC) based quaternion least mean square (OC-QLMS) and OC-augmented QLMS (OC-AQLMS) algorithms, which censor less informative data in order to reduce computational complexity without severely affecting performance. Next, to censor both the outlier and noninformative data, we also propose the robust OC-QLMS (ROC-QLMS) and ROC-AQLMS. Fixed and adaptive threshold rules are introduced into the proposed OC algorithms to efficiently implement the desired censoring probability in the quaternion domain. The fundamental convergence analysis on the step size for all the proposed algorithms is also presented and the superior properties of the proposed algorithms are demonstrated in system identification scenarios." @default.
- W4323913671 created "2023-03-12" @default.
- W4323913671 creator A5006714786 @default.
- W4323913671 creator A5027367490 @default.
- W4323913671 creator A5078893881 @default.
- W4323913671 date "2023-01-01" @default.
- W4323913671 modified "2023-10-14" @default.
- W4323913671 title "A Class of Online Censoring Based Quaternion-Valued Least Mean Square Algorithms" @default.
- W4323913671 cites W1527786550 @default.
- W4323913671 cites W1560971997 @default.
- W4323913671 cites W1855615675 @default.
- W4323913671 cites W1921661266 @default.
- W4323913671 cites W1965914766 @default.
- W4323913671 cites W2003563417 @default.
- W4323913671 cites W2030294077 @default.
- W4323913671 cites W2051245758 @default.
- W4323913671 cites W2075198545 @default.
- W4323913671 cites W2091366315 @default.
- W4323913671 cites W2094646141 @default.
- W4323913671 cites W2101869650 @default.
- W4323913671 cites W2114765937 @default.
- W4323913671 cites W2118369318 @default.
- W4323913671 cites W2144472563 @default.
- W4323913671 cites W2147917079 @default.
- W4323913671 cites W2170400088 @default.
- W4323913671 cites W2170646498 @default.
- W4323913671 cites W2344336171 @default.
- W4323913671 cites W2403228779 @default.
- W4323913671 cites W2490837849 @default.
- W4323913671 cites W2500610825 @default.
- W4323913671 cites W2525110762 @default.
- W4323913671 cites W2536893788 @default.
- W4323913671 cites W2562582361 @default.
- W4323913671 cites W2775180954 @default.
- W4323913671 cites W2780762438 @default.
- W4323913671 cites W2792217159 @default.
- W4323913671 cites W2923872554 @default.
- W4323913671 cites W2963627197 @default.
- W4323913671 cites W2977861416 @default.
- W4323913671 cites W2978437779 @default.
- W4323913671 cites W3017988012 @default.
- W4323913671 cites W3092753424 @default.
- W4323913671 cites W3111809085 @default.
- W4323913671 cites W3129321953 @default.
- W4323913671 cites W3162223212 @default.
- W4323913671 cites W3165560557 @default.
- W4323913671 cites W3185828489 @default.
- W4323913671 cites W3196219156 @default.
- W4323913671 cites W3199279148 @default.
- W4323913671 cites W4214882535 @default.
- W4323913671 cites W4281640233 @default.
- W4323913671 cites W4313188585 @default.
- W4323913671 cites W80623023 @default.
- W4323913671 cites W963427357 @default.
- W4323913671 doi "https://doi.org/10.1109/lsp.2023.3255000" @default.
- W4323913671 hasPublicationYear "2023" @default.
- W4323913671 type Work @default.
- W4323913671 citedByCount "0" @default.
- W4323913671 crossrefType "journal-article" @default.
- W4323913671 hasAuthorship W4323913671A5006714786 @default.
- W4323913671 hasAuthorship W4323913671A5027367490 @default.
- W4323913671 hasAuthorship W4323913671A5078893881 @default.
- W4323913671 hasConcept C104317684 @default.
- W4323913671 hasConcept C105795698 @default.
- W4323913671 hasConcept C11413529 @default.
- W4323913671 hasConcept C137668524 @default.
- W4323913671 hasConcept C139945424 @default.
- W4323913671 hasConcept C154945302 @default.
- W4323913671 hasConcept C162324750 @default.
- W4323913671 hasConcept C179799912 @default.
- W4323913671 hasConcept C185592680 @default.
- W4323913671 hasConcept C200127275 @default.
- W4323913671 hasConcept C2524010 @default.
- W4323913671 hasConcept C2777303404 @default.
- W4323913671 hasConcept C33923547 @default.
- W4323913671 hasConcept C41008148 @default.
- W4323913671 hasConcept C50522688 @default.
- W4323913671 hasConcept C55493867 @default.
- W4323913671 hasConcept C63479239 @default.
- W4323913671 hasConcept C79337645 @default.
- W4323913671 hasConceptScore W4323913671C104317684 @default.
- W4323913671 hasConceptScore W4323913671C105795698 @default.
- W4323913671 hasConceptScore W4323913671C11413529 @default.
- W4323913671 hasConceptScore W4323913671C137668524 @default.
- W4323913671 hasConceptScore W4323913671C139945424 @default.
- W4323913671 hasConceptScore W4323913671C154945302 @default.
- W4323913671 hasConceptScore W4323913671C162324750 @default.
- W4323913671 hasConceptScore W4323913671C179799912 @default.
- W4323913671 hasConceptScore W4323913671C185592680 @default.
- W4323913671 hasConceptScore W4323913671C200127275 @default.
- W4323913671 hasConceptScore W4323913671C2524010 @default.
- W4323913671 hasConceptScore W4323913671C2777303404 @default.
- W4323913671 hasConceptScore W4323913671C33923547 @default.
- W4323913671 hasConceptScore W4323913671C41008148 @default.
- W4323913671 hasConceptScore W4323913671C50522688 @default.
- W4323913671 hasConceptScore W4323913671C55493867 @default.
- W4323913671 hasConceptScore W4323913671C63479239 @default.
- W4323913671 hasConceptScore W4323913671C79337645 @default.