Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323914207> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4323914207 endingPage "625" @default.
- W4323914207 startingPage "609" @default.
- W4323914207 abstract "Recently, segmentation-based text detection methods are quite popular in the scene text detection field, because of their superiority for text instances with arbitrary shapes and extreme aspect ratios. However, the vast majority of the existing segmentation-based methods are difficult to detect curved and dense text instances due to principle of these methods. In this paper, we propose a novel text detection method named BorderNet. The key idea of BorderNet is making full use of border-center information to detect the curve and dense text. Furthermore, a efficient Multi-Scale Feature Enhancement Module is proposed to improve the scale and shape robustness by enhancing features of different scales adaptively. Our method outperforms SOTA on multiple datasets, achieving 89% accuracy on ICDAR2015 and 87.1% accuracy on Total-Text. What’s more, we can maintain 84.5% accuracy on DAST1500." @default.
- W4323914207 created "2023-03-12" @default.
- W4323914207 creator A5022791764 @default.
- W4323914207 creator A5047326148 @default.
- W4323914207 creator A5066455265 @default.
- W4323914207 date "2023-01-01" @default.
- W4323914207 modified "2023-09-30" @default.
- W4323914207 title "BorderNet: An Efficient Border-Attention Text Detector" @default.
- W4323914207 cites W1901129140 @default.
- W4323914207 cites W1903029394 @default.
- W4323914207 cites W2074849287 @default.
- W4323914207 cites W2144506857 @default.
- W4323914207 cites W2194775991 @default.
- W4323914207 cites W2519818067 @default.
- W4323914207 cites W2565639579 @default.
- W4323914207 cites W2604243686 @default.
- W4323914207 cites W2604735854 @default.
- W4323914207 cites W2605982830 @default.
- W4323914207 cites W2776766448 @default.
- W4323914207 cites W2810028092 @default.
- W4323914207 cites W2875814315 @default.
- W4323914207 cites W2902494497 @default.
- W4323914207 cites W2962810613 @default.
- W4323914207 cites W2963161243 @default.
- W4323914207 cites W2963353821 @default.
- W4323914207 cites W2963647456 @default.
- W4323914207 cites W2964294787 @default.
- W4323914207 cites W2967615747 @default.
- W4323914207 cites W2968226676 @default.
- W4323914207 cites W2991626090 @default.
- W4323914207 cites W2998621280 @default.
- W4323914207 cites W3024377038 @default.
- W4323914207 cites W3035679705 @default.
- W4323914207 cites W3092619320 @default.
- W4323914207 cites W3106228955 @default.
- W4323914207 cites W3172799005 @default.
- W4323914207 cites W3181016597 @default.
- W4323914207 cites W4214922754 @default.
- W4323914207 cites W4225672218 @default.
- W4323914207 cites W4312443924 @default.
- W4323914207 doi "https://doi.org/10.1007/978-3-031-26293-7_36" @default.
- W4323914207 hasPublicationYear "2023" @default.
- W4323914207 type Work @default.
- W4323914207 citedByCount "0" @default.
- W4323914207 crossrefType "book-chapter" @default.
- W4323914207 hasAuthorship W4323914207A5022791764 @default.
- W4323914207 hasAuthorship W4323914207A5047326148 @default.
- W4323914207 hasAuthorship W4323914207A5066455265 @default.
- W4323914207 hasConcept C104317684 @default.
- W4323914207 hasConcept C115961682 @default.
- W4323914207 hasConcept C153180895 @default.
- W4323914207 hasConcept C154945302 @default.
- W4323914207 hasConcept C185592680 @default.
- W4323914207 hasConcept C26517878 @default.
- W4323914207 hasConcept C2983589003 @default.
- W4323914207 hasConcept C38652104 @default.
- W4323914207 hasConcept C41008148 @default.
- W4323914207 hasConcept C55493867 @default.
- W4323914207 hasConcept C63479239 @default.
- W4323914207 hasConcept C76155785 @default.
- W4323914207 hasConcept C89600930 @default.
- W4323914207 hasConcept C94915269 @default.
- W4323914207 hasConceptScore W4323914207C104317684 @default.
- W4323914207 hasConceptScore W4323914207C115961682 @default.
- W4323914207 hasConceptScore W4323914207C153180895 @default.
- W4323914207 hasConceptScore W4323914207C154945302 @default.
- W4323914207 hasConceptScore W4323914207C185592680 @default.
- W4323914207 hasConceptScore W4323914207C26517878 @default.
- W4323914207 hasConceptScore W4323914207C2983589003 @default.
- W4323914207 hasConceptScore W4323914207C38652104 @default.
- W4323914207 hasConceptScore W4323914207C41008148 @default.
- W4323914207 hasConceptScore W4323914207C55493867 @default.
- W4323914207 hasConceptScore W4323914207C63479239 @default.
- W4323914207 hasConceptScore W4323914207C76155785 @default.
- W4323914207 hasConceptScore W4323914207C89600930 @default.
- W4323914207 hasConceptScore W4323914207C94915269 @default.
- W4323914207 hasLocation W43239142071 @default.
- W4323914207 hasOpenAccess W4323914207 @default.
- W4323914207 hasPrimaryLocation W43239142071 @default.
- W4323914207 hasRelatedWork W2028369743 @default.
- W4323914207 hasRelatedWork W2510758617 @default.
- W4323914207 hasRelatedWork W2753174232 @default.
- W4323914207 hasRelatedWork W2754350655 @default.
- W4323914207 hasRelatedWork W2897195263 @default.
- W4323914207 hasRelatedWork W3095523211 @default.
- W4323914207 hasRelatedWork W4206076898 @default.
- W4323914207 hasRelatedWork W4226401448 @default.
- W4323914207 hasRelatedWork W2165454781 @default.
- W4323914207 hasRelatedWork W3091050991 @default.
- W4323914207 isParatext "false" @default.
- W4323914207 isRetracted "false" @default.
- W4323914207 workType "book-chapter" @default.