Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323923242> ?p ?o ?g. }
- W4323923242 endingPage "67" @default.
- W4323923242 startingPage "54" @default.
- W4323923242 abstract "The contribution of venting fluids at mid-ocean ridges to global ocean biogeochemical cycles is well recognized. Less is known about the role of magmatically-active intra-plate volcanoes. In this study, new compositional fluid data were acquired from 20 to 50 °C vent fluids at Kamaʻehuakanaloa (previously known as Lōʻihi) seamount (Hawai’ian archipelago) and used to model the wide diversity of reaction conditions capable of producing the Fe-, Si- and CO2-rich vent fluids observed. Our conceptual model includes a first step where seawater reacts with increasing proportions of basalt and gas as the temperature increases, and a second step where the resulting hydrothermal fluid mixes with unaltered seawater while continuing to react with basalt until the fluid mixture reaches 20 °C. A series of reaction paths were chosen to vary: the maximum temperature during Step 1 (50 to 400 °C) and the proportions of basalt and gas reacting; the degree, F, of low-temperature basalt alteration during Step 2, which corresponds to the extent to which the hot fluid generated during Step 1 continues to react with more basalt as it ascends to the seafloor. Our model shows that the 20–50 °C vent fluids are greatly dependent on the degree of low-temperature basalt alteration during fluid upwelling. Indeed, the compositions of Kamaʻehuakanaloa vent fluids cannot be reconciled with a general model of subsurface mechanical mixing of high-temperature end-member vent fluid and seawater alone. Instead, they require both subsurface equilibrium mixing between a ≥350 °C hydrothermal fluid end-member and seawater and further basalt alteration that must occur as the fluid mixture rises to the seafloor. Although it involves only ∼4% of the amount of basalt having reacted during Step 1, this low-temperature basalt alteration during Step 2 leads to the characteristic enrichments in Fe observed in the Kamaʻehuakanaloa vent fluids and a concomitant depletion in H2S. We hypothesize that low-temperature basalt alteration during an extended path of fluid upwelling through the subseafloor might arise as a direct consequence of the height and steep-sloped topography of Kamaʻehuakanaloa seamount. If correct, this suggests a more general case - that input from magmatically-active intraplate volcanoes, which have been relatively overlooked throughout the history of submarine vent investigations to date, could differ significantly from global mid-ocean ridge fluxes and contribute more substantially than previously recognized to the global ocean Fe cycle." @default.
- W4323923242 created "2023-03-12" @default.
- W4323923242 creator A5013521458 @default.
- W4323923242 creator A5015876678 @default.
- W4323923242 creator A5028617497 @default.
- W4323923242 creator A5042047873 @default.
- W4323923242 creator A5059991582 @default.
- W4323923242 creator A5071942045 @default.
- W4323923242 creator A5077769926 @default.
- W4323923242 creator A5089072901 @default.
- W4323923242 date "2023-05-01" @default.
- W4323923242 modified "2023-10-15" @default.
- W4323923242 title "Multiple parameters enable deconvolution of water-rock reaction paths in low-temperature vent fluids of the Kamaʻehuakanaloa (Lōʻihi) seamount" @default.
- W4323923242 cites W1540607934 @default.
- W4323923242 cites W1577223726 @default.
- W4323923242 cites W1607885691 @default.
- W4323923242 cites W1631925744 @default.
- W4323923242 cites W1916836139 @default.
- W4323923242 cites W1967540505 @default.
- W4323923242 cites W1969051824 @default.
- W4323923242 cites W1972289882 @default.
- W4323923242 cites W1977542813 @default.
- W4323923242 cites W1977911061 @default.
- W4323923242 cites W1978064699 @default.
- W4323923242 cites W1980158492 @default.
- W4323923242 cites W1981750637 @default.
- W4323923242 cites W1990266338 @default.
- W4323923242 cites W1990983699 @default.
- W4323923242 cites W1994874475 @default.
- W4323923242 cites W1996000677 @default.
- W4323923242 cites W2006048429 @default.
- W4323923242 cites W2006663150 @default.
- W4323923242 cites W2007135147 @default.
- W4323923242 cites W2014365296 @default.
- W4323923242 cites W2017188476 @default.
- W4323923242 cites W2017918382 @default.
- W4323923242 cites W2019682959 @default.
- W4323923242 cites W2021616521 @default.
- W4323923242 cites W2027467585 @default.
- W4323923242 cites W2030134340 @default.
- W4323923242 cites W2032367236 @default.
- W4323923242 cites W2034934500 @default.
- W4323923242 cites W2035316081 @default.
- W4323923242 cites W2038516598 @default.
- W4323923242 cites W2043464527 @default.
- W4323923242 cites W2046227630 @default.
- W4323923242 cites W2050259086 @default.
- W4323923242 cites W2050903220 @default.
- W4323923242 cites W2051502687 @default.
- W4323923242 cites W2052767116 @default.
- W4323923242 cites W2054645658 @default.
- W4323923242 cites W2062055122 @default.
- W4323923242 cites W2065059281 @default.
- W4323923242 cites W2066527077 @default.
- W4323923242 cites W2069062881 @default.
- W4323923242 cites W2072112611 @default.
- W4323923242 cites W2077664513 @default.
- W4323923242 cites W2078288112 @default.
- W4323923242 cites W2084132612 @default.
- W4323923242 cites W2085448926 @default.
- W4323923242 cites W2091429053 @default.
- W4323923242 cites W2093417455 @default.
- W4323923242 cites W2098232539 @default.
- W4323923242 cites W2098437707 @default.
- W4323923242 cites W2108813557 @default.
- W4323923242 cites W2111763116 @default.
- W4323923242 cites W2112503764 @default.
- W4323923242 cites W2136835806 @default.
- W4323923242 cites W2147216013 @default.
- W4323923242 cites W2160980032 @default.
- W4323923242 cites W2301453182 @default.
- W4323923242 cites W2322863203 @default.
- W4323923242 cites W2512471043 @default.
- W4323923242 cites W2548560477 @default.
- W4323923242 cites W2617775343 @default.
- W4323923242 cites W2761664440 @default.
- W4323923242 cites W2792378909 @default.
- W4323923242 cites W2921517786 @default.
- W4323923242 cites W2969464972 @default.
- W4323923242 cites W2997426638 @default.
- W4323923242 cites W3008772364 @default.
- W4323923242 cites W3015033693 @default.
- W4323923242 cites W3021247592 @default.
- W4323923242 cites W3023157038 @default.
- W4323923242 cites W3048825998 @default.
- W4323923242 cites W3107617890 @default.
- W4323923242 cites W593122179 @default.
- W4323923242 doi "https://doi.org/10.1016/j.gca.2023.03.013" @default.
- W4323923242 hasPublicationYear "2023" @default.
- W4323923242 type Work @default.
- W4323923242 citedByCount "3" @default.
- W4323923242 countsByYear W43239232422023 @default.
- W4323923242 crossrefType "journal-article" @default.
- W4323923242 hasAuthorship W4323923242A5013521458 @default.
- W4323923242 hasAuthorship W4323923242A5015876678 @default.
- W4323923242 hasAuthorship W4323923242A5028617497 @default.
- W4323923242 hasAuthorship W4323923242A5042047873 @default.
- W4323923242 hasAuthorship W4323923242A5059991582 @default.