Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323923247> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4323923247 endingPage "409" @default.
- W4323923247 startingPage "384" @default.
- W4323923247 abstract "Finding k-edge connected components (k-ECCs) is widely used to investigate the major cohesive structures within a graph. Traditional methods utilizing global minimum cut to split the graph iteratively are too slow to deal with graphs of a large size. Recently, approximate algorithms based on a decomposition framework have been proposed to speed up the process. However, these algorithms produce low-quality results in graphs containing vertex pairs that are k-connected but do not belong to a k-ECC. In this paper, we propose a decomposition framework that utilizes a local edge connectivity check method to obtain high-quality results in a shorter period. The proposed method utilizes an improved maximum flow algorithm to detect k-ECCs from local k-cores by merging more vertices in each iteration than existing methods. Moreover, a pruning strategy is applied in the decomposition framework to reduce unnecessary branches in the decomposition tree. Our experimental results on both synthetic and real graphs show that our proposed algorithm is faster than the state-of-the-art algorithms in most datasets and achieves effective results among the approximate algorithms with a 96% accuracy on our experimental datasets." @default.
- W4323923247 created "2023-03-12" @default.
- W4323923247 creator A5007613197 @default.
- W4323923247 creator A5021543946 @default.
- W4323923247 creator A5049394506 @default.
- W4323923247 creator A5085983836 @default.
- W4323923247 date "2023-07-01" @default.
- W4323923247 modified "2023-09-27" @default.
- W4323923247 title "A fast approximate method for k-edge connected component detection in graphs with high accuracy" @default.
- W4323923247 cites W1515033817 @default.
- W4323923247 cites W1974074452 @default.
- W4323923247 cites W2008292658 @default.
- W4323923247 cites W2057463094 @default.
- W4323923247 cites W2090359754 @default.
- W4323923247 cites W2147965279 @default.
- W4323923247 cites W2508761936 @default.
- W4323923247 cites W2860192827 @default.
- W4323923247 cites W2950742983 @default.
- W4323923247 cites W2964998526 @default.
- W4323923247 cites W2965011693 @default.
- W4323923247 cites W2986225379 @default.
- W4323923247 cites W2995878843 @default.
- W4323923247 cites W3005197571 @default.
- W4323923247 cites W3011254058 @default.
- W4323923247 cites W3013573132 @default.
- W4323923247 cites W3033544197 @default.
- W4323923247 cites W3046476726 @default.
- W4323923247 cites W3087406311 @default.
- W4323923247 cites W3120750584 @default.
- W4323923247 cites W4220721362 @default.
- W4323923247 cites W4220941681 @default.
- W4323923247 cites W4283326737 @default.
- W4323923247 doi "https://doi.org/10.1016/j.ins.2023.03.009" @default.
- W4323923247 hasPublicationYear "2023" @default.
- W4323923247 type Work @default.
- W4323923247 citedByCount "0" @default.
- W4323923247 crossrefType "journal-article" @default.
- W4323923247 hasAuthorship W4323923247A5007613197 @default.
- W4323923247 hasAuthorship W4323923247A5021543946 @default.
- W4323923247 hasAuthorship W4323923247A5049394506 @default.
- W4323923247 hasAuthorship W4323923247A5085983836 @default.
- W4323923247 hasConcept C108010975 @default.
- W4323923247 hasConcept C111919701 @default.
- W4323923247 hasConcept C11413529 @default.
- W4323923247 hasConcept C132525143 @default.
- W4323923247 hasConcept C154945302 @default.
- W4323923247 hasConcept C162307627 @default.
- W4323923247 hasConcept C187407849 @default.
- W4323923247 hasConcept C193435613 @default.
- W4323923247 hasConcept C203776342 @default.
- W4323923247 hasConcept C41008148 @default.
- W4323923247 hasConcept C43517604 @default.
- W4323923247 hasConcept C6557445 @default.
- W4323923247 hasConcept C80444323 @default.
- W4323923247 hasConcept C80899671 @default.
- W4323923247 hasConcept C86803240 @default.
- W4323923247 hasConcept C98045186 @default.
- W4323923247 hasConceptScore W4323923247C108010975 @default.
- W4323923247 hasConceptScore W4323923247C111919701 @default.
- W4323923247 hasConceptScore W4323923247C11413529 @default.
- W4323923247 hasConceptScore W4323923247C132525143 @default.
- W4323923247 hasConceptScore W4323923247C154945302 @default.
- W4323923247 hasConceptScore W4323923247C162307627 @default.
- W4323923247 hasConceptScore W4323923247C187407849 @default.
- W4323923247 hasConceptScore W4323923247C193435613 @default.
- W4323923247 hasConceptScore W4323923247C203776342 @default.
- W4323923247 hasConceptScore W4323923247C41008148 @default.
- W4323923247 hasConceptScore W4323923247C43517604 @default.
- W4323923247 hasConceptScore W4323923247C6557445 @default.
- W4323923247 hasConceptScore W4323923247C80444323 @default.
- W4323923247 hasConceptScore W4323923247C80899671 @default.
- W4323923247 hasConceptScore W4323923247C86803240 @default.
- W4323923247 hasConceptScore W4323923247C98045186 @default.
- W4323923247 hasLocation W43239232471 @default.
- W4323923247 hasOpenAccess W4323923247 @default.
- W4323923247 hasPrimaryLocation W43239232471 @default.
- W4323923247 hasRelatedWork W1574372718 @default.
- W4323923247 hasRelatedWork W1843038572 @default.
- W4323923247 hasRelatedWork W2275666876 @default.
- W4323923247 hasRelatedWork W2317319075 @default.
- W4323923247 hasRelatedWork W2326122716 @default.
- W4323923247 hasRelatedWork W2386767533 @default.
- W4323923247 hasRelatedWork W2734504143 @default.
- W4323923247 hasRelatedWork W3047144510 @default.
- W4323923247 hasRelatedWork W3140942413 @default.
- W4323923247 hasRelatedWork W2012842278 @default.
- W4323923247 hasVolume "633" @default.
- W4323923247 isParatext "false" @default.
- W4323923247 isRetracted "false" @default.
- W4323923247 workType "article" @default.