Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323923311> ?p ?o ?g. }
- W4323923311 endingPage "100863" @default.
- W4323923311 startingPage "100863" @default.
- W4323923311 abstract "For energy suppliers, forecasting the energy demand with accuracy is essential. The current studies in the literature have employed various statistical and machine/deep learning forecasting methods to predict energy consumption. Although deep learning methods have been successfully applied in this context, their performance can be improved by incorporating statistical features representing the characteristics of time series. This study proposes a novel two-stage forecasting framework composed of data preprocessing and model building. The data preprocessing component extracts statistical features from the input data, and then an XGBoost regressor is utilized to obtain the importance of each feature. The model-building component uses the obtained features and the original input data to construct the forecasting model. We implement three forecasting models based on the proposed approach using two state-of-the-art deep learning models, including the temporal convolution neural network and Multi-head Attention. We empirically evaluate the proposed approach on two renewable energy consumption datasets. The results of experiments indicate that incorporating features is beneficial for temporal convolution neural network-based and Multi-head Attention-based deep learning models performance. This study significantly contributes to the existing models in the literature, as the combined methods improve on their regular variants and the benchmark models." @default.
- W4323923311 created "2023-03-12" @default.
- W4323923311 creator A5038143390 @default.
- W4323923311 creator A5057409216 @default.
- W4323923311 creator A5064267652 @default.
- W4323923311 date "2023-04-01" @default.
- W4323923311 modified "2023-10-10" @default.
- W4323923311 title "A novel XGBoost-based featurization approach to forecast renewable energy consumption with deep learning models" @default.
- W4323923311 cites W2051502925 @default.
- W4323923311 cites W2265701427 @default.
- W4323923311 cites W2521199728 @default.
- W4323923311 cites W2769174254 @default.
- W4323923311 cites W2792809551 @default.
- W4323923311 cites W2793266273 @default.
- W4323923311 cites W2899283552 @default.
- W4323923311 cites W2943664944 @default.
- W4323923311 cites W2962822108 @default.
- W4323923311 cites W2963532813 @default.
- W4323923311 cites W3010335229 @default.
- W4323923311 cites W3013144827 @default.
- W4323923311 cites W3022039226 @default.
- W4323923311 cites W3033117260 @default.
- W4323923311 cites W3102476541 @default.
- W4323923311 cites W3107979244 @default.
- W4323923311 cites W3134352905 @default.
- W4323923311 cites W3140854437 @default.
- W4323923311 cites W3154414470 @default.
- W4323923311 cites W3170003932 @default.
- W4323923311 cites W3190174790 @default.
- W4323923311 cites W3205902290 @default.
- W4323923311 cites W4205535139 @default.
- W4323923311 cites W4206217959 @default.
- W4323923311 cites W4210446036 @default.
- W4323923311 cites W4224211827 @default.
- W4323923311 cites W4229007708 @default.
- W4323923311 cites W4229368245 @default.
- W4323923311 cites W4283158762 @default.
- W4323923311 cites W4283641686 @default.
- W4323923311 doi "https://doi.org/10.1016/j.suscom.2023.100863" @default.
- W4323923311 hasPublicationYear "2023" @default.
- W4323923311 type Work @default.
- W4323923311 citedByCount "1" @default.
- W4323923311 crossrefType "journal-article" @default.
- W4323923311 hasAuthorship W4323923311A5038143390 @default.
- W4323923311 hasAuthorship W4323923311A5057409216 @default.
- W4323923311 hasAuthorship W4323923311A5064267652 @default.
- W4323923311 hasConcept C10551718 @default.
- W4323923311 hasConcept C108583219 @default.
- W4323923311 hasConcept C119599485 @default.
- W4323923311 hasConcept C119857082 @default.
- W4323923311 hasConcept C121332964 @default.
- W4323923311 hasConcept C124101348 @default.
- W4323923311 hasConcept C127413603 @default.
- W4323923311 hasConcept C13280743 @default.
- W4323923311 hasConcept C138885662 @default.
- W4323923311 hasConcept C151730666 @default.
- W4323923311 hasConcept C154945302 @default.
- W4323923311 hasConcept C168167062 @default.
- W4323923311 hasConcept C185798385 @default.
- W4323923311 hasConcept C205649164 @default.
- W4323923311 hasConcept C2776401178 @default.
- W4323923311 hasConcept C2779343474 @default.
- W4323923311 hasConcept C2780165032 @default.
- W4323923311 hasConcept C34736171 @default.
- W4323923311 hasConcept C41008148 @default.
- W4323923311 hasConcept C41895202 @default.
- W4323923311 hasConcept C50644808 @default.
- W4323923311 hasConcept C86803240 @default.
- W4323923311 hasConcept C97355855 @default.
- W4323923311 hasConceptScore W4323923311C10551718 @default.
- W4323923311 hasConceptScore W4323923311C108583219 @default.
- W4323923311 hasConceptScore W4323923311C119599485 @default.
- W4323923311 hasConceptScore W4323923311C119857082 @default.
- W4323923311 hasConceptScore W4323923311C121332964 @default.
- W4323923311 hasConceptScore W4323923311C124101348 @default.
- W4323923311 hasConceptScore W4323923311C127413603 @default.
- W4323923311 hasConceptScore W4323923311C13280743 @default.
- W4323923311 hasConceptScore W4323923311C138885662 @default.
- W4323923311 hasConceptScore W4323923311C151730666 @default.
- W4323923311 hasConceptScore W4323923311C154945302 @default.
- W4323923311 hasConceptScore W4323923311C168167062 @default.
- W4323923311 hasConceptScore W4323923311C185798385 @default.
- W4323923311 hasConceptScore W4323923311C205649164 @default.
- W4323923311 hasConceptScore W4323923311C2776401178 @default.
- W4323923311 hasConceptScore W4323923311C2779343474 @default.
- W4323923311 hasConceptScore W4323923311C2780165032 @default.
- W4323923311 hasConceptScore W4323923311C34736171 @default.
- W4323923311 hasConceptScore W4323923311C41008148 @default.
- W4323923311 hasConceptScore W4323923311C41895202 @default.
- W4323923311 hasConceptScore W4323923311C50644808 @default.
- W4323923311 hasConceptScore W4323923311C86803240 @default.
- W4323923311 hasConceptScore W4323923311C97355855 @default.
- W4323923311 hasLocation W43239233111 @default.
- W4323923311 hasOpenAccess W4323923311 @default.
- W4323923311 hasPrimaryLocation W43239233111 @default.
- W4323923311 hasRelatedWork W138569904 @default.
- W4323923311 hasRelatedWork W2367545121 @default.
- W4323923311 hasRelatedWork W2368524271 @default.