Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323924495> ?p ?o ?g. }
- W4323924495 endingPage "113285" @default.
- W4323924495 startingPage "113285" @default.
- W4323924495 abstract "Following the work of Chiu based on classical Shannon entropy, several kinds of generalized entropies have been explored in literature for studying open-channel flow. In this work, we explore a new kind of entropy, namely fractional entropy, which is based on the popular fractional calculus, to derive the vertical distribution of streamwise velocity in open channels. The velocity profile is derived analytically using the series approximation for the Lambert function. Also, the entropy index (i.e., the order of the fractional derivative) is considered a varying parameter and is computed along with the Lagrange multipliers by solving a nonlinear system using the second-order moment constraint, i.e., the momentum balance equation. The derived velocity equation is validated with selected laboratory and field data and compared with the Shannon, Tsallis, and Renyi entropy-based velocity profiles. It is observed that the proposed model can predict the measured values well for all the cases and the model corresponding to the entropy-based momentum coefficient formula is superior to all the abovementioned models. Further, the effects of Lagrange multipliers and the entropy index on the velocity profile are discussed. Also, the entropy index values for all the data are not close to zero, which specializes the entropy into the classical Shannon entropy, and hence, the approach justifies the applicability of the fractional entropy over the Shannon entropy in the context of open-channel flow velocity. Moreover, the methodology is developed based on an approximation of the series, which is based on a convergence criterion. This criterion needs to be verified against each of the data sets and, therefore, may become a difficult task for handling large data sets. To address this issue, this study provides a possible way of reformulating the mathematical model in terms of a nonlinear system with inequality constraint as a scope for future research. Finally, it is expected that the study can be further extended to study other kinds of important hydraulic variables such as sediment concentration, shear stress, etc." @default.
- W4323924495 created "2023-03-12" @default.
- W4323924495 creator A5028847806 @default.
- W4323924495 creator A5035773547 @default.
- W4323924495 date "2023-04-01" @default.
- W4323924495 modified "2023-10-03" @default.
- W4323924495 title "Analytical modeling of vertical distribution of streamwise velocity in open channels using fractional entropy" @default.
- W4323924495 cites W1964994124 @default.
- W4323924495 cites W1968372207 @default.
- W4323924495 cites W1970412632 @default.
- W4323924495 cites W1973277251 @default.
- W4323924495 cites W1982613687 @default.
- W4323924495 cites W1993493107 @default.
- W4323924495 cites W1995875735 @default.
- W4323924495 cites W1999285076 @default.
- W4323924495 cites W2027611801 @default.
- W4323924495 cites W2032558547 @default.
- W4323924495 cites W2034133710 @default.
- W4323924495 cites W2050580185 @default.
- W4323924495 cites W2055686110 @default.
- W4323924495 cites W2057395226 @default.
- W4323924495 cites W2059613502 @default.
- W4323924495 cites W2068728923 @default.
- W4323924495 cites W2069670068 @default.
- W4323924495 cites W2078399286 @default.
- W4323924495 cites W2084587441 @default.
- W4323924495 cites W2085469146 @default.
- W4323924495 cites W2086773195 @default.
- W4323924495 cites W2087039005 @default.
- W4323924495 cites W2089983649 @default.
- W4323924495 cites W2092365533 @default.
- W4323924495 cites W2140425410 @default.
- W4323924495 cites W2155086759 @default.
- W4323924495 cites W2171309390 @default.
- W4323924495 cites W2261991651 @default.
- W4323924495 cites W2283838326 @default.
- W4323924495 cites W2613941102 @default.
- W4323924495 cites W2918335093 @default.
- W4323924495 cites W2935984814 @default.
- W4323924495 cites W2990319010 @default.
- W4323924495 cites W3043054378 @default.
- W4323924495 cites W3044499437 @default.
- W4323924495 cites W3093534170 @default.
- W4323924495 cites W3103782166 @default.
- W4323924495 cites W3111050031 @default.
- W4323924495 cites W3185060169 @default.
- W4323924495 cites W4221136967 @default.
- W4323924495 cites W4252028749 @default.
- W4323924495 cites W4256415651 @default.
- W4323924495 cites W4285042637 @default.
- W4323924495 cites W4297017862 @default.
- W4323924495 cites W4308453971 @default.
- W4323924495 cites W766142319 @default.
- W4323924495 doi "https://doi.org/10.1016/j.chaos.2023.113285" @default.
- W4323924495 hasPublicationYear "2023" @default.
- W4323924495 type Work @default.
- W4323924495 citedByCount "2" @default.
- W4323924495 countsByYear W43239244952023 @default.
- W4323924495 crossrefType "journal-article" @default.
- W4323924495 hasAuthorship W4323924495A5028847806 @default.
- W4323924495 hasAuthorship W4323924495A5035773547 @default.
- W4323924495 hasConcept C105795698 @default.
- W4323924495 hasConcept C106301342 @default.
- W4323924495 hasConcept C106752470 @default.
- W4323924495 hasConcept C117521176 @default.
- W4323924495 hasConcept C121332964 @default.
- W4323924495 hasConcept C121864883 @default.
- W4323924495 hasConcept C125252325 @default.
- W4323924495 hasConcept C126255220 @default.
- W4323924495 hasConcept C134306372 @default.
- W4323924495 hasConcept C142611142 @default.
- W4323924495 hasConcept C2780056601 @default.
- W4323924495 hasConcept C28826006 @default.
- W4323924495 hasConcept C33923547 @default.
- W4323924495 hasConcept C42047476 @default.
- W4323924495 hasConcept C49775889 @default.
- W4323924495 hasConcept C60507348 @default.
- W4323924495 hasConcept C62520636 @default.
- W4323924495 hasConcept C73684929 @default.
- W4323924495 hasConcept C9679016 @default.
- W4323924495 hasConceptScore W4323924495C105795698 @default.
- W4323924495 hasConceptScore W4323924495C106301342 @default.
- W4323924495 hasConceptScore W4323924495C106752470 @default.
- W4323924495 hasConceptScore W4323924495C117521176 @default.
- W4323924495 hasConceptScore W4323924495C121332964 @default.
- W4323924495 hasConceptScore W4323924495C121864883 @default.
- W4323924495 hasConceptScore W4323924495C125252325 @default.
- W4323924495 hasConceptScore W4323924495C126255220 @default.
- W4323924495 hasConceptScore W4323924495C134306372 @default.
- W4323924495 hasConceptScore W4323924495C142611142 @default.
- W4323924495 hasConceptScore W4323924495C2780056601 @default.
- W4323924495 hasConceptScore W4323924495C28826006 @default.
- W4323924495 hasConceptScore W4323924495C33923547 @default.
- W4323924495 hasConceptScore W4323924495C42047476 @default.
- W4323924495 hasConceptScore W4323924495C49775889 @default.
- W4323924495 hasConceptScore W4323924495C60507348 @default.
- W4323924495 hasConceptScore W4323924495C62520636 @default.
- W4323924495 hasConceptScore W4323924495C73684929 @default.