Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323926338> ?p ?o ?g. }
- W4323926338 endingPage "103" @default.
- W4323926338 startingPage "85" @default.
- W4323926338 abstract "The multivariate spatio-temporal data contains complex spatio-temporal background and channel coupling information. Effective extraction of these features is crucial for data generation. In this paper, a separated multiple attention network is proposed, which can capture the correlation of multiple types of variables in the same space-time, different spaces at the same time, and different times in the same space. Meanwhile, a new multiscale loss processing method based on homoscedasticity uncertainty and the assumption of gaussian loss distribution is proposed to balance the numerical scale of each channel loss in training. The experiment shows that our method has better performance and robustness than the classical machine learning model and higher computational efficiency than the physical model. It can generate multivariate intermittent spatial-temporal fields with a maximum lead time of 3 days and multivariate continuous spatial-temporal fields with a maximum lead time of 7 days." @default.
- W4323926338 created "2023-03-12" @default.
- W4323926338 creator A5010706286 @default.
- W4323926338 creator A5035826055 @default.
- W4323926338 creator A5045333326 @default.
- W4323926338 creator A5052074775 @default.
- W4323926338 date "2023-07-01" @default.
- W4323926338 modified "2023-10-18" @default.
- W4323926338 title "Deep generation network for multivariate spatio-temporal data based on separated attention" @default.
- W4323926338 cites W1964940342 @default.
- W4323926338 cites W1982978541 @default.
- W4323926338 cites W1997570574 @default.
- W4323926338 cites W2051001388 @default.
- W4323926338 cites W2064675550 @default.
- W4323926338 cites W2087946919 @default.
- W4323926338 cites W2462302850 @default.
- W4323926338 cites W2746781442 @default.
- W4323926338 cites W2778580105 @default.
- W4323926338 cites W2790930884 @default.
- W4323926338 cites W2897470801 @default.
- W4323926338 cites W2899816880 @default.
- W4323926338 cites W2919115771 @default.
- W4323926338 cites W2955983821 @default.
- W4323926338 cites W2967877666 @default.
- W4323926338 cites W2973731563 @default.
- W4323926338 cites W2997240345 @default.
- W4323926338 cites W3011992967 @default.
- W4323926338 cites W3025949386 @default.
- W4323926338 cites W3030113778 @default.
- W4323926338 cites W3080366021 @default.
- W4323926338 cites W3103794298 @default.
- W4323926338 cites W3112756409 @default.
- W4323926338 cites W4200567002 @default.
- W4323926338 cites W4212861398 @default.
- W4323926338 cites W4214577967 @default.
- W4323926338 cites W4295116087 @default.
- W4323926338 cites W4311001965 @default.
- W4323926338 cites W4311433789 @default.
- W4323926338 doi "https://doi.org/10.1016/j.ins.2023.03.062" @default.
- W4323926338 hasPublicationYear "2023" @default.
- W4323926338 type Work @default.
- W4323926338 citedByCount "1" @default.
- W4323926338 countsByYear W43239263382023 @default.
- W4323926338 crossrefType "journal-article" @default.
- W4323926338 hasAuthorship W4323926338A5010706286 @default.
- W4323926338 hasAuthorship W4323926338A5035826055 @default.
- W4323926338 hasAuthorship W4323926338A5045333326 @default.
- W4323926338 hasAuthorship W4323926338A5052074775 @default.
- W4323926338 hasConcept C101104100 @default.
- W4323926338 hasConcept C104317684 @default.
- W4323926338 hasConcept C104409967 @default.
- W4323926338 hasConcept C105795698 @default.
- W4323926338 hasConcept C119857082 @default.
- W4323926338 hasConcept C121332964 @default.
- W4323926338 hasConcept C124101348 @default.
- W4323926338 hasConcept C127162648 @default.
- W4323926338 hasConcept C153180895 @default.
- W4323926338 hasConcept C154945302 @default.
- W4323926338 hasConcept C159620131 @default.
- W4323926338 hasConcept C161584116 @default.
- W4323926338 hasConcept C163716315 @default.
- W4323926338 hasConcept C177384507 @default.
- W4323926338 hasConcept C185592680 @default.
- W4323926338 hasConcept C31258907 @default.
- W4323926338 hasConcept C33923547 @default.
- W4323926338 hasConcept C41008148 @default.
- W4323926338 hasConcept C55493867 @default.
- W4323926338 hasConcept C62520636 @default.
- W4323926338 hasConcept C63479239 @default.
- W4323926338 hasConceptScore W4323926338C101104100 @default.
- W4323926338 hasConceptScore W4323926338C104317684 @default.
- W4323926338 hasConceptScore W4323926338C104409967 @default.
- W4323926338 hasConceptScore W4323926338C105795698 @default.
- W4323926338 hasConceptScore W4323926338C119857082 @default.
- W4323926338 hasConceptScore W4323926338C121332964 @default.
- W4323926338 hasConceptScore W4323926338C124101348 @default.
- W4323926338 hasConceptScore W4323926338C127162648 @default.
- W4323926338 hasConceptScore W4323926338C153180895 @default.
- W4323926338 hasConceptScore W4323926338C154945302 @default.
- W4323926338 hasConceptScore W4323926338C159620131 @default.
- W4323926338 hasConceptScore W4323926338C161584116 @default.
- W4323926338 hasConceptScore W4323926338C163716315 @default.
- W4323926338 hasConceptScore W4323926338C177384507 @default.
- W4323926338 hasConceptScore W4323926338C185592680 @default.
- W4323926338 hasConceptScore W4323926338C31258907 @default.
- W4323926338 hasConceptScore W4323926338C33923547 @default.
- W4323926338 hasConceptScore W4323926338C41008148 @default.
- W4323926338 hasConceptScore W4323926338C55493867 @default.
- W4323926338 hasConceptScore W4323926338C62520636 @default.
- W4323926338 hasConceptScore W4323926338C63479239 @default.
- W4323926338 hasLocation W43239263381 @default.
- W4323926338 hasOpenAccess W4323926338 @default.
- W4323926338 hasPrimaryLocation W43239263381 @default.
- W4323926338 hasRelatedWork W1487680268 @default.
- W4323926338 hasRelatedWork W1530312010 @default.
- W4323926338 hasRelatedWork W2015240834 @default.
- W4323926338 hasRelatedWork W2086688912 @default.
- W4323926338 hasRelatedWork W2790402973 @default.