Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323926462> ?p ?o ?g. }
- W4323926462 endingPage "102791" @default.
- W4323926462 startingPage "102791" @default.
- W4323926462 abstract "Accurate segmentation in histopathology images at pixel-level plays a critical role in the digital pathology workflow. The development of weakly supervised methods for histopathology image segmentation liberates pathologists from time-consuming and labor-intensive works, opening up possibilities of further automated quantitative analysis of whole-slide histopathology images. As an effective subgroup of weakly supervised methods, multiple instance learning (MIL) has achieved great success in histopathology images. In this paper, we specially treat pixels as instances so that the histopathology image segmentation task is transformed into an instance prediction task in MIL. However, the lack of relations between instances in MIL limits the further improvement of segmentation performance. Therefore, we propose a novel weakly supervised method called SA-MIL for pixel-level segmentation in histopathology images. SA-MIL introduces a self-attention mechanism into the MIL framework, which captures global correlation among all instances. In addition, we use deep supervision to make the best use of information from limited annotations in the weakly supervised method. Our approach makes up for the shortcoming that instances are independent of each other in MIL by aggregating global contextual information. We demonstrate state-of-the-art results compared to other weakly supervised methods on two histopathology image datasets. It is evident that our approach has generalization ability for the high performance on both tissue and cell histopathology datasets. There is potential in our approach for various applications in medical images." @default.
- W4323926462 created "2023-03-12" @default.
- W4323926462 creator A5013972536 @default.
- W4323926462 creator A5026812255 @default.
- W4323926462 creator A5058794879 @default.
- W4323926462 creator A5065079026 @default.
- W4323926462 creator A5065305411 @default.
- W4323926462 creator A5072790755 @default.
- W4323926462 creator A5083440332 @default.
- W4323926462 creator A5087298985 @default.
- W4323926462 creator A5087371112 @default.
- W4323926462 date "2023-05-01" @default.
- W4323926462 modified "2023-10-11" @default.
- W4323926462 title "Weakly supervised histopathology image segmentation with self-attention" @default.
- W4323926462 cites W2037227137 @default.
- W4323926462 cites W2098140880 @default.
- W4323926462 cites W2110119381 @default.
- W4323926462 cites W2144349513 @default.
- W4323926462 cites W2146655125 @default.
- W4323926462 cites W2156398782 @default.
- W4323926462 cites W2160754664 @default.
- W4323926462 cites W2167460663 @default.
- W4323926462 cites W2214871046 @default.
- W4323926462 cites W2295107390 @default.
- W4323926462 cites W2396622801 @default.
- W4323926462 cites W2470965540 @default.
- W4323926462 cites W2560886373 @default.
- W4323926462 cites W2613041730 @default.
- W4323926462 cites W2746791238 @default.
- W4323926462 cites W2798376494 @default.
- W4323926462 cites W2805735218 @default.
- W4323926462 cites W2963091558 @default.
- W4323926462 cites W2963311325 @default.
- W4323926462 cites W2963803174 @default.
- W4323926462 cites W2981689412 @default.
- W4323926462 cites W3015130244 @default.
- W4323926462 cites W3023138874 @default.
- W4323926462 cites W3033382446 @default.
- W4323926462 cites W3034447539 @default.
- W4323926462 cites W3043535018 @default.
- W4323926462 cites W3096812112 @default.
- W4323926462 cites W3096948214 @default.
- W4323926462 cites W3102988878 @default.
- W4323926462 cites W3106105822 @default.
- W4323926462 cites W3135547872 @default.
- W4323926462 cites W3149040786 @default.
- W4323926462 cites W3152635971 @default.
- W4323926462 cites W4221115899 @default.
- W4323926462 doi "https://doi.org/10.1016/j.media.2023.102791" @default.
- W4323926462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36933385" @default.
- W4323926462 hasPublicationYear "2023" @default.
- W4323926462 type Work @default.
- W4323926462 citedByCount "1" @default.
- W4323926462 countsByYear W43239264622023 @default.
- W4323926462 crossrefType "journal-article" @default.
- W4323926462 hasAuthorship W4323926462A5013972536 @default.
- W4323926462 hasAuthorship W4323926462A5026812255 @default.
- W4323926462 hasAuthorship W4323926462A5058794879 @default.
- W4323926462 hasAuthorship W4323926462A5065079026 @default.
- W4323926462 hasAuthorship W4323926462A5065305411 @default.
- W4323926462 hasAuthorship W4323926462A5072790755 @default.
- W4323926462 hasAuthorship W4323926462A5083440332 @default.
- W4323926462 hasAuthorship W4323926462A5087298985 @default.
- W4323926462 hasAuthorship W4323926462A5087371112 @default.
- W4323926462 hasConcept C124504099 @default.
- W4323926462 hasConcept C142724271 @default.
- W4323926462 hasConcept C153180895 @default.
- W4323926462 hasConcept C154945302 @default.
- W4323926462 hasConcept C160633673 @default.
- W4323926462 hasConcept C2777522853 @default.
- W4323926462 hasConcept C31972630 @default.
- W4323926462 hasConcept C41008148 @default.
- W4323926462 hasConcept C544855455 @default.
- W4323926462 hasConcept C71924100 @default.
- W4323926462 hasConcept C89600930 @default.
- W4323926462 hasConceptScore W4323926462C124504099 @default.
- W4323926462 hasConceptScore W4323926462C142724271 @default.
- W4323926462 hasConceptScore W4323926462C153180895 @default.
- W4323926462 hasConceptScore W4323926462C154945302 @default.
- W4323926462 hasConceptScore W4323926462C160633673 @default.
- W4323926462 hasConceptScore W4323926462C2777522853 @default.
- W4323926462 hasConceptScore W4323926462C31972630 @default.
- W4323926462 hasConceptScore W4323926462C41008148 @default.
- W4323926462 hasConceptScore W4323926462C544855455 @default.
- W4323926462 hasConceptScore W4323926462C71924100 @default.
- W4323926462 hasConceptScore W4323926462C89600930 @default.
- W4323926462 hasLocation W43239264621 @default.
- W4323926462 hasLocation W43239264622 @default.
- W4323926462 hasOpenAccess W4323926462 @default.
- W4323926462 hasPrimaryLocation W43239264621 @default.
- W4323926462 hasRelatedWork W1522196789 @default.
- W4323926462 hasRelatedWork W2115661411 @default.
- W4323926462 hasRelatedWork W2399391471 @default.
- W4323926462 hasRelatedWork W2400254106 @default.
- W4323926462 hasRelatedWork W2970729894 @default.
- W4323926462 hasRelatedWork W3039419443 @default.
- W4323926462 hasRelatedWork W3165349357 @default.
- W4323926462 hasRelatedWork W4381996710 @default.