Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323928908> ?p ?o ?g. }
- W4323928908 endingPage "169615" @default.
- W4323928908 startingPage "169615" @default.
- W4323928908 abstract "As an emerging technology to solve the bottleneck of plastic processing of light alloys, electromagnetic forming usually causes a complex mechanical response and microstructure evolution of materials. In this work, based on the electromagnetic ring expansion (EMRE) experiment, the relationship between microstructure evolution and mechanical properties of AA2219-T6 under EMRE with different discharge energies is established. In particular, to reveal the influence of strain and temperature parameters on the output response during the electromagnetic pulse process, a Q235 steel sleeve and an epoxy resin sleeve with different thermal conductivities are applied to constrain the deformation of the ring, respectively, thus the performance under electromagnetic treatment (EMT) are investigated. It is found that, under the threshold discharge energy of 4.23 kJ, the microhardness of the ring via EMT with the steel sleeve is similar to that of AA2219-T6, but increases by 20.9% compared with the ring via EMT with the epoxy sleeve and 17.1% compared with the ring via EMRE. The electromagnetic pulse has no significant effect on the evolution of precipitates in AA2219-T6-EMT (Steel), but the adiabatic temperature rise in AA2219-T6-EMT (Epoxy) caused redissolution of G.P.Ⅱ zones. With the gradual increase of discharge energy under EMRE, the microhardness of AA2219-T6 increases initially and followed by a decrease, while the fracture strain increases continuously. When discharge energy reaches 8.63 kJ, 2219 aluminum alloy has the optimal mechanical properties that, compared with AA2219-T6, the microhardness increased by 14.2% and the fracture strain increased by 18.0%. The dislocation density shows a trend of first increasing and then decreasing with the increase of discharge energy. Combined with the observed phase transformation, it is shown that dislocations generated by EMRE will promote G.P.Ⅱ zones to transform into θ′′ phases, and affected by dislocation density, the transformation effect is most obvious at 8.63 kJ. In addition, the transformation of precipitates greatly increases the probability of hindering the motion of dislocations, which promotes the precipitates to be dispersed, and AA2219-T6 is further strengthened after EMRE. As discharge energy continues to increase, the dislocations begin to annihilate and G.P.Ⅱ zones are redissolved due to the adiabatic temperature rise." @default.
- W4323928908 created "2023-03-12" @default.
- W4323928908 creator A5007718212 @default.
- W4323928908 creator A5021641471 @default.
- W4323928908 creator A5027129848 @default.
- W4323928908 creator A5035976373 @default.
- W4323928908 creator A5047722665 @default.
- W4323928908 creator A5055982232 @default.
- W4323928908 creator A5075662908 @default.
- W4323928908 creator A5076596821 @default.
- W4323928908 creator A5078949442 @default.
- W4323928908 date "2023-06-01" @default.
- W4323928908 modified "2023-10-18" @default.
- W4323928908 title "Mechanical properties and microstructure evolution of 2219 aluminum alloy via electromagnetic ring expansion & electromagnetic treatment" @default.
- W4323928908 cites W1654856661 @default.
- W4323928908 cites W1969987170 @default.
- W4323928908 cites W1989081123 @default.
- W4323928908 cites W2011441885 @default.
- W4323928908 cites W2024213957 @default.
- W4323928908 cites W2025913159 @default.
- W4323928908 cites W2030517652 @default.
- W4323928908 cites W2036359663 @default.
- W4323928908 cites W2037334870 @default.
- W4323928908 cites W2044891463 @default.
- W4323928908 cites W2046470662 @default.
- W4323928908 cites W2047015819 @default.
- W4323928908 cites W2047891650 @default.
- W4323928908 cites W2048075098 @default.
- W4323928908 cites W2059769901 @default.
- W4323928908 cites W2060213478 @default.
- W4323928908 cites W2061005527 @default.
- W4323928908 cites W2077817606 @default.
- W4323928908 cites W2082658590 @default.
- W4323928908 cites W2093168837 @default.
- W4323928908 cites W2105868899 @default.
- W4323928908 cites W2340554977 @default.
- W4323928908 cites W2473034410 @default.
- W4323928908 cites W2559625695 @default.
- W4323928908 cites W2588263535 @default.
- W4323928908 cites W2765679797 @default.
- W4323928908 cites W2774184226 @default.
- W4323928908 cites W2776149851 @default.
- W4323928908 cites W2790598154 @default.
- W4323928908 cites W2791498204 @default.
- W4323928908 cites W2913459227 @default.
- W4323928908 cites W2993237359 @default.
- W4323928908 cites W3005861115 @default.
- W4323928908 cites W3010662017 @default.
- W4323928908 cites W3046805851 @default.
- W4323928908 cites W3083084888 @default.
- W4323928908 cites W3092574752 @default.
- W4323928908 cites W3110658539 @default.
- W4323928908 cites W3127553342 @default.
- W4323928908 cites W3186105290 @default.
- W4323928908 cites W3189678582 @default.
- W4323928908 cites W3198090584 @default.
- W4323928908 cites W3203834432 @default.
- W4323928908 doi "https://doi.org/10.1016/j.jallcom.2023.169615" @default.
- W4323928908 hasPublicationYear "2023" @default.
- W4323928908 type Work @default.
- W4323928908 citedByCount "0" @default.
- W4323928908 crossrefType "journal-article" @default.
- W4323928908 hasAuthorship W4323928908A5007718212 @default.
- W4323928908 hasAuthorship W4323928908A5021641471 @default.
- W4323928908 hasAuthorship W4323928908A5027129848 @default.
- W4323928908 hasAuthorship W4323928908A5035976373 @default.
- W4323928908 hasAuthorship W4323928908A5047722665 @default.
- W4323928908 hasAuthorship W4323928908A5055982232 @default.
- W4323928908 hasAuthorship W4323928908A5075662908 @default.
- W4323928908 hasAuthorship W4323928908A5076596821 @default.
- W4323928908 hasAuthorship W4323928908A5078949442 @default.
- W4323928908 hasConcept C119599485 @default.
- W4323928908 hasConcept C127413603 @default.
- W4323928908 hasConcept C138885662 @default.
- W4323928908 hasConcept C159985019 @default.
- W4323928908 hasConcept C165720898 @default.
- W4323928908 hasConcept C166595027 @default.
- W4323928908 hasConcept C191897082 @default.
- W4323928908 hasConcept C192562407 @default.
- W4323928908 hasConcept C204366326 @default.
- W4323928908 hasConcept C21036866 @default.
- W4323928908 hasConcept C2779543734 @default.
- W4323928908 hasConcept C2780026712 @default.
- W4323928908 hasConcept C30403606 @default.
- W4323928908 hasConcept C41895202 @default.
- W4323928908 hasConcept C43369102 @default.
- W4323928908 hasConcept C87976508 @default.
- W4323928908 hasConceptScore W4323928908C119599485 @default.
- W4323928908 hasConceptScore W4323928908C127413603 @default.
- W4323928908 hasConceptScore W4323928908C138885662 @default.
- W4323928908 hasConceptScore W4323928908C159985019 @default.
- W4323928908 hasConceptScore W4323928908C165720898 @default.
- W4323928908 hasConceptScore W4323928908C166595027 @default.
- W4323928908 hasConceptScore W4323928908C191897082 @default.
- W4323928908 hasConceptScore W4323928908C192562407 @default.
- W4323928908 hasConceptScore W4323928908C204366326 @default.
- W4323928908 hasConceptScore W4323928908C21036866 @default.
- W4323928908 hasConceptScore W4323928908C2779543734 @default.