Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323967532> ?p ?o ?g. }
- W4323967532 endingPage "140" @default.
- W4323967532 startingPage "119" @default.
- W4323967532 abstract "CO2 capture and sequestration is a prominent field of study with high research demands. It involves capturing CO2 from various large point sources and storing it to prevent its emission. Various conventional CO2 sequestration techniques currently in practice involve CO2 storage in geological formations such as depleted oil and gas reservoirs, saline aquifers, and enhanced oil recovery (EOR) applications. Another emerging technique is to store CO2 in the hydrate form in marine sediments owing to its large storage capacity. Gas hydrates are crystalline solid structures formed by the physical combination of gas (such as methane, carbon dioxide, propane, etc.) and water molecules at high-pressure and low-temperature conditions. This chapter briefly describes the conventional CO2 sequestration techniques with the challenges encountered in their application. Further, the chapter discusses the use of machine learning in gas hydrate related studies particularly concerning hydrate-based CO2 capture and sequestration." @default.
- W4323967532 created "2023-03-13" @default.
- W4323967532 creator A5021772605 @default.
- W4323967532 creator A5042837712 @default.
- W4323967532 date "2023-01-01" @default.
- W4323967532 modified "2023-09-24" @default.
- W4323967532 title "Machine Learning in CO2 Sequestration" @default.
- W4323967532 cites W1979702386 @default.
- W4323967532 cites W1985499900 @default.
- W4323967532 cites W1986374267 @default.
- W4323967532 cites W1993860522 @default.
- W4323967532 cites W1998813909 @default.
- W4323967532 cites W2002686272 @default.
- W4323967532 cites W2005578606 @default.
- W4323967532 cites W2011022619 @default.
- W4323967532 cites W2012350231 @default.
- W4323967532 cites W2014951715 @default.
- W4323967532 cites W2016696365 @default.
- W4323967532 cites W2018546748 @default.
- W4323967532 cites W2021463559 @default.
- W4323967532 cites W2022530563 @default.
- W4323967532 cites W2023740047 @default.
- W4323967532 cites W2024908520 @default.
- W4323967532 cites W2049878243 @default.
- W4323967532 cites W2051702101 @default.
- W4323967532 cites W2051871885 @default.
- W4323967532 cites W2063597912 @default.
- W4323967532 cites W2065275311 @default.
- W4323967532 cites W2072764279 @default.
- W4323967532 cites W2081910345 @default.
- W4323967532 cites W2082198444 @default.
- W4323967532 cites W2096665245 @default.
- W4323967532 cites W2098260702 @default.
- W4323967532 cites W2105730493 @default.
- W4323967532 cites W2107882247 @default.
- W4323967532 cites W2119102259 @default.
- W4323967532 cites W2119743251 @default.
- W4323967532 cites W2119872499 @default.
- W4323967532 cites W2123286193 @default.
- W4323967532 cites W2138203931 @default.
- W4323967532 cites W2147573135 @default.
- W4323967532 cites W2157475649 @default.
- W4323967532 cites W2192385567 @default.
- W4323967532 cites W2203978601 @default.
- W4323967532 cites W2215778448 @default.
- W4323967532 cites W2257937107 @default.
- W4323967532 cites W2325777149 @default.
- W4323967532 cites W2332028445 @default.
- W4323967532 cites W2413408826 @default.
- W4323967532 cites W2503576947 @default.
- W4323967532 cites W2512383231 @default.
- W4323967532 cites W2520900658 @default.
- W4323967532 cites W2531823422 @default.
- W4323967532 cites W2590947148 @default.
- W4323967532 cites W2618060225 @default.
- W4323967532 cites W2622736968 @default.
- W4323967532 cites W2748518956 @default.
- W4323967532 cites W2750145376 @default.
- W4323967532 cites W2756431597 @default.
- W4323967532 cites W2759565175 @default.
- W4323967532 cites W2765464466 @default.
- W4323967532 cites W2779282420 @default.
- W4323967532 cites W2792040563 @default.
- W4323967532 cites W2793998527 @default.
- W4323967532 cites W2801621690 @default.
- W4323967532 cites W2803396148 @default.
- W4323967532 cites W2810338816 @default.
- W4323967532 cites W2811437997 @default.
- W4323967532 cites W2924550391 @default.
- W4323967532 cites W2939372867 @default.
- W4323967532 cites W2958702840 @default.
- W4323967532 cites W2960854905 @default.
- W4323967532 cites W2990056487 @default.
- W4323967532 cites W2996599990 @default.
- W4323967532 cites W3000297880 @default.
- W4323967532 cites W3012146373 @default.
- W4323967532 cites W302520091 @default.
- W4323967532 cites W3027340277 @default.
- W4323967532 cites W3044002609 @default.
- W4323967532 cites W3093766507 @default.
- W4323967532 cites W3095182156 @default.
- W4323967532 cites W3157798299 @default.
- W4323967532 cites W3185197779 @default.
- W4323967532 cites W3202082778 @default.
- W4323967532 cites W3204517926 @default.
- W4323967532 cites W3209411500 @default.
- W4323967532 cites W4247491582 @default.
- W4323967532 doi "https://doi.org/10.1007/978-3-031-24231-1_7" @default.
- W4323967532 hasPublicationYear "2023" @default.
- W4323967532 type Work @default.
- W4323967532 citedByCount "0" @default.
- W4323967532 crossrefType "book-chapter" @default.
- W4323967532 hasAuthorship W4323967532A5021772605 @default.
- W4323967532 hasAuthorship W4323967532A5042837712 @default.
- W4323967532 hasConcept C100402318 @default.
- W4323967532 hasConcept C111368507 @default.
- W4323967532 hasConcept C127313418 @default.
- W4323967532 hasConcept C127413603 @default.