Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323968470> ?p ?o ?g. }
- W4323968470 endingPage "126" @default.
- W4323968470 startingPage "111" @default.
- W4323968470 abstract "Abstract Testing a model in property evaluation can be a difficult task due to the large variety of these models. The most popular models used in valuation are regression and neural networks. This paper applied a systematic review study and presents 11 types of regression models and 9 types of neural network models applied in real estate valuation. Our aim is to provide a tool for model selection applied in real estate valuation. The selection criteria were based on their applicability, user preferences and price estimation performance. The findings were slightly different from our expectations. Multi-Layer Perceptron (MLP) and Multiple Linear Regression (GLM) are the most applied and popular models in valuation." @default.
- W4323968470 created "2023-03-13" @default.
- W4323968470 creator A5014194037 @default.
- W4323968470 date "2022-12-01" @default.
- W4323968470 modified "2023-09-27" @default.
- W4323968470 title "The contribution of statistical models in the field of real estate valuation" @default.
- W4323968470 cites W1504778066 @default.
- W4323968470 cites W1513231198 @default.
- W4323968470 cites W1514038697 @default.
- W4323968470 cites W1537400860 @default.
- W4323968470 cites W1551034569 @default.
- W4323968470 cites W1556739244 @default.
- W4323968470 cites W1754495824 @default.
- W4323968470 cites W1866684356 @default.
- W4323968470 cites W1921059104 @default.
- W4323968470 cites W1972667276 @default.
- W4323968470 cites W1972694933 @default.
- W4323968470 cites W1979249583 @default.
- W4323968470 cites W1988980926 @default.
- W4323968470 cites W2009943061 @default.
- W4323968470 cites W2020351153 @default.
- W4323968470 cites W2023612050 @default.
- W4323968470 cites W2029613488 @default.
- W4323968470 cites W2032387441 @default.
- W4323968470 cites W2037416267 @default.
- W4323968470 cites W2044090912 @default.
- W4323968470 cites W2044729940 @default.
- W4323968470 cites W2045759522 @default.
- W4323968470 cites W2051688880 @default.
- W4323968470 cites W2051704617 @default.
- W4323968470 cites W2053506197 @default.
- W4323968470 cites W2056575182 @default.
- W4323968470 cites W2059307122 @default.
- W4323968470 cites W2060259733 @default.
- W4323968470 cites W2063540322 @default.
- W4323968470 cites W2066192217 @default.
- W4323968470 cites W2067141068 @default.
- W4323968470 cites W2073390757 @default.
- W4323968470 cites W2094496064 @default.
- W4323968470 cites W2105040914 @default.
- W4323968470 cites W2107632758 @default.
- W4323968470 cites W2123866109 @default.
- W4323968470 cites W2129620380 @default.
- W4323968470 cites W2142278475 @default.
- W4323968470 cites W2143652321 @default.
- W4323968470 cites W2157520488 @default.
- W4323968470 cites W2158787774 @default.
- W4323968470 cites W2293723945 @default.
- W4323968470 cites W2342047525 @default.
- W4323968470 cites W2464475417 @default.
- W4323968470 cites W2487770199 @default.
- W4323968470 cites W2585458859 @default.
- W4323968470 cites W2751758508 @default.
- W4323968470 cites W2795218372 @default.
- W4323968470 cites W2894563084 @default.
- W4323968470 cites W2908970112 @default.
- W4323968470 cites W2951282667 @default.
- W4323968470 cites W3041783027 @default.
- W4323968470 cites W4245410968 @default.
- W4323968470 doi "https://doi.org/10.2478/tjeb-2022-0007" @default.
- W4323968470 hasPublicationYear "2022" @default.
- W4323968470 type Work @default.
- W4323968470 citedByCount "0" @default.
- W4323968470 crossrefType "journal-article" @default.
- W4323968470 hasAuthorship W4323968470A5014194037 @default.
- W4323968470 hasBestOaLocation W43239684701 @default.
- W4323968470 hasConcept C10138342 @default.
- W4323968470 hasConcept C105795698 @default.
- W4323968470 hasConcept C119857082 @default.
- W4323968470 hasConcept C124101348 @default.
- W4323968470 hasConcept C149782125 @default.
- W4323968470 hasConcept C152877465 @default.
- W4323968470 hasConcept C154945302 @default.
- W4323968470 hasConcept C162324750 @default.
- W4323968470 hasConcept C179717631 @default.
- W4323968470 hasConcept C186027771 @default.
- W4323968470 hasConcept C33923547 @default.
- W4323968470 hasConcept C41008148 @default.
- W4323968470 hasConcept C48921125 @default.
- W4323968470 hasConcept C50644808 @default.
- W4323968470 hasConcept C60908668 @default.
- W4323968470 hasConcept C82279013 @default.
- W4323968470 hasConcept C83546350 @default.
- W4323968470 hasConceptScore W4323968470C10138342 @default.
- W4323968470 hasConceptScore W4323968470C105795698 @default.
- W4323968470 hasConceptScore W4323968470C119857082 @default.
- W4323968470 hasConceptScore W4323968470C124101348 @default.
- W4323968470 hasConceptScore W4323968470C149782125 @default.
- W4323968470 hasConceptScore W4323968470C152877465 @default.
- W4323968470 hasConceptScore W4323968470C154945302 @default.
- W4323968470 hasConceptScore W4323968470C162324750 @default.
- W4323968470 hasConceptScore W4323968470C179717631 @default.
- W4323968470 hasConceptScore W4323968470C186027771 @default.
- W4323968470 hasConceptScore W4323968470C33923547 @default.
- W4323968470 hasConceptScore W4323968470C41008148 @default.
- W4323968470 hasConceptScore W4323968470C48921125 @default.
- W4323968470 hasConceptScore W4323968470C50644808 @default.
- W4323968470 hasConceptScore W4323968470C60908668 @default.