Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323975458> ?p ?o ?g. }
- W4323975458 endingPage "119874" @default.
- W4323975458 startingPage "119874" @default.
- W4323975458 abstract "Four different machine learning algorithms, including Decision Tree (DT), Random Forest (RF), Multivariable Linear Regression (MLR), Support Vector Regressions (SVR), and Gaussian Process Regressions (GPR), were applied to predict the performance of a multi-media filter operating as a function of raw water quality and plant operating variables. The models were trained using data collected over a seven year period covering water quality and operating variables, including true colour, turbidity, plant flow, and chemical dose for chlorine, KMnO4, FeCl3, and Cationic Polymer (PolyDADMAC). The machine learning algorithms have shown that the best prediction is at a 1-day time lag between input variables and unit filter run volume (UFRV). Furthermore, the RF algorithm with grid search using the input metrics mentioned above with a 1-day time lag has provided the highest reliability in predicting UFRV with a RMSE and R2 of 31.58 and 0.98, respectively. Similarly, RF with grid search has shown the shortest training time, prediction accuracy, and forecasting events using a ROC-AUC curve analysis (AUC over 0.8) in extreme wet weather events. Therefore, Random Forest with grid search and a 1-day time lag is an effective and robust machine learning algorithm that can predict the filter performance to aid water treatment operators in their decision makings by providing real-time warning of the potential turbidity breakthrough from the filters." @default.
- W4323975458 created "2023-03-13" @default.
- W4323975458 creator A5006366247 @default.
- W4323975458 creator A5015267461 @default.
- W4323975458 creator A5027908940 @default.
- W4323975458 creator A5034127968 @default.
- W4323975458 creator A5037041274 @default.
- W4323975458 creator A5037454743 @default.
- W4323975458 creator A5039348608 @default.
- W4323975458 creator A5075388845 @default.
- W4323975458 creator A5078474694 @default.
- W4323975458 date "2023-05-01" @default.
- W4323975458 modified "2023-10-18" @default.
- W4323975458 title "Forecasting and Optimizing Dual Media Filter Performance via Machine Learning" @default.
- W4323975458 cites W1420230988 @default.
- W4323975458 cites W1629102637 @default.
- W4323975458 cites W1631708156 @default.
- W4323975458 cites W1935786512 @default.
- W4323975458 cites W1967211424 @default.
- W4323975458 cites W1970593617 @default.
- W4323975458 cites W1985986137 @default.
- W4323975458 cites W1993042558 @default.
- W4323975458 cites W1998462925 @default.
- W4323975458 cites W2004505673 @default.
- W4323975458 cites W2020097894 @default.
- W4323975458 cites W2036885130 @default.
- W4323975458 cites W2059989526 @default.
- W4323975458 cites W2068684977 @default.
- W4323975458 cites W2154274106 @default.
- W4323975458 cites W2158001550 @default.
- W4323975458 cites W2603668603 @default.
- W4323975458 cites W2620300958 @default.
- W4323975458 cites W2739900084 @default.
- W4323975458 cites W2790423016 @default.
- W4323975458 cites W2801227115 @default.
- W4323975458 cites W2899962178 @default.
- W4323975458 cites W2908990055 @default.
- W4323975458 cites W2911964244 @default.
- W4323975458 cites W2947134316 @default.
- W4323975458 cites W2962727190 @default.
- W4323975458 cites W2980376317 @default.
- W4323975458 cites W2993623314 @default.
- W4323975458 cites W2995574841 @default.
- W4323975458 cites W2999667975 @default.
- W4323975458 cites W3000411869 @default.
- W4323975458 cites W3001448906 @default.
- W4323975458 cites W3006101764 @default.
- W4323975458 cites W3021306803 @default.
- W4323975458 cites W3082577835 @default.
- W4323975458 cites W3099018856 @default.
- W4323975458 cites W3121135125 @default.
- W4323975458 doi "https://doi.org/10.1016/j.watres.2023.119874" @default.
- W4323975458 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36947925" @default.
- W4323975458 hasPublicationYear "2023" @default.
- W4323975458 type Work @default.
- W4323975458 citedByCount "1" @default.
- W4323975458 countsByYear W43239754582023 @default.
- W4323975458 crossrefType "journal-article" @default.
- W4323975458 hasAuthorship W4323975458A5006366247 @default.
- W4323975458 hasAuthorship W4323975458A5015267461 @default.
- W4323975458 hasAuthorship W4323975458A5027908940 @default.
- W4323975458 hasAuthorship W4323975458A5034127968 @default.
- W4323975458 hasAuthorship W4323975458A5037041274 @default.
- W4323975458 hasAuthorship W4323975458A5037454743 @default.
- W4323975458 hasAuthorship W4323975458A5039348608 @default.
- W4323975458 hasAuthorship W4323975458A5075388845 @default.
- W4323975458 hasAuthorship W4323975458A5078474694 @default.
- W4323975458 hasBestOaLocation W43239754581 @default.
- W4323975458 hasConcept C10485038 @default.
- W4323975458 hasConcept C106131492 @default.
- W4323975458 hasConcept C11413529 @default.
- W4323975458 hasConcept C119857082 @default.
- W4323975458 hasConcept C12267149 @default.
- W4323975458 hasConcept C154945302 @default.
- W4323975458 hasConcept C169258074 @default.
- W4323975458 hasConcept C2780150128 @default.
- W4323975458 hasConcept C31972630 @default.
- W4323975458 hasConcept C41008148 @default.
- W4323975458 hasConcept C50644808 @default.
- W4323975458 hasConcept C58471807 @default.
- W4323975458 hasConcept C84525736 @default.
- W4323975458 hasConceptScore W4323975458C10485038 @default.
- W4323975458 hasConceptScore W4323975458C106131492 @default.
- W4323975458 hasConceptScore W4323975458C11413529 @default.
- W4323975458 hasConceptScore W4323975458C119857082 @default.
- W4323975458 hasConceptScore W4323975458C12267149 @default.
- W4323975458 hasConceptScore W4323975458C154945302 @default.
- W4323975458 hasConceptScore W4323975458C169258074 @default.
- W4323975458 hasConceptScore W4323975458C2780150128 @default.
- W4323975458 hasConceptScore W4323975458C31972630 @default.
- W4323975458 hasConceptScore W4323975458C41008148 @default.
- W4323975458 hasConceptScore W4323975458C50644808 @default.
- W4323975458 hasConceptScore W4323975458C58471807 @default.
- W4323975458 hasConceptScore W4323975458C84525736 @default.
- W4323975458 hasFunder F4320313566 @default.
- W4323975458 hasFunder F4320334704 @default.
- W4323975458 hasLocation W43239754581 @default.
- W4323975458 hasLocation W43239754582 @default.