Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323975488> ?p ?o ?g. }
- W4323975488 endingPage "109247" @default.
- W4323975488 startingPage "109247" @default.
- W4323975488 abstract "Deep learning methods play an increasingly important role in RUL prediction for machines due to their powerful nonlinear mapping capabilities. However, these methods often suffer from information leakage and correlation loss between features and data during the mapping process. A novel attention-augmented recalibrated and compensatory network (ATRCN) is proposed for RUL prediction, which contains a local interaction-feature (LIF) mechanism and a global compensation-information (GCI) mechanism. Firstly, the LIF mechanism strengthens the correlation between features and attention weights and recalibrate multidimensional feature. Then, the GCI mechanism is used to compensate for the information leakage of the long short-term memory (LSTM) network by adding the information of the intermediate hidden states to the last hidden state according to the attention compensation factor. The proposed method is verified by two benchmark datasets. Experimental results demonstrate that the prediction performance of the ATRCN is better than some existing approaches." @default.
- W4323975488 created "2023-03-13" @default.
- W4323975488 creator A5026720933 @default.
- W4323975488 creator A5028439184 @default.
- W4323975488 creator A5042388620 @default.
- W4323975488 creator A5046672072 @default.
- W4323975488 creator A5049692788 @default.
- W4323975488 creator A5075231909 @default.
- W4323975488 date "2023-07-01" @default.
- W4323975488 modified "2023-10-16" @default.
- W4323975488 title "Attention-augmented recalibrated and compensatory network for machine remaining useful life prediction" @default.
- W4323975488 cites W2022621390 @default.
- W4323975488 cites W2064675550 @default.
- W4323975488 cites W2471161958 @default.
- W4323975488 cites W2544905596 @default.
- W4323975488 cites W2553456597 @default.
- W4323975488 cites W2601486059 @default.
- W4323975488 cites W2772084711 @default.
- W4323975488 cites W2773549135 @default.
- W4323975488 cites W2908875359 @default.
- W4323975488 cites W2917169831 @default.
- W4323975488 cites W2944676531 @default.
- W4323975488 cites W2972641997 @default.
- W4323975488 cites W2977223508 @default.
- W4323975488 cites W3006585575 @default.
- W4323975488 cites W3007676167 @default.
- W4323975488 cites W3014146531 @default.
- W4323975488 cites W3023647578 @default.
- W4323975488 cites W3024753947 @default.
- W4323975488 cites W3027554678 @default.
- W4323975488 cites W3032983473 @default.
- W4323975488 cites W3034552520 @default.
- W4323975488 cites W3037944824 @default.
- W4323975488 cites W3042726568 @default.
- W4323975488 cites W3080252448 @default.
- W4323975488 cites W3083685710 @default.
- W4323975488 cites W3083956363 @default.
- W4323975488 cites W3165927186 @default.
- W4323975488 cites W3166737565 @default.
- W4323975488 cites W3170305376 @default.
- W4323975488 cites W3173071471 @default.
- W4323975488 cites W3177862163 @default.
- W4323975488 cites W3178034484 @default.
- W4323975488 cites W3199716762 @default.
- W4323975488 cites W3201516250 @default.
- W4323975488 cites W3207642814 @default.
- W4323975488 cites W4200209943 @default.
- W4323975488 cites W4205830141 @default.
- W4323975488 cites W4212940123 @default.
- W4323975488 cites W4226461442 @default.
- W4323975488 doi "https://doi.org/10.1016/j.ress.2023.109247" @default.
- W4323975488 hasPublicationYear "2023" @default.
- W4323975488 type Work @default.
- W4323975488 citedByCount "0" @default.
- W4323975488 crossrefType "journal-article" @default.
- W4323975488 hasAuthorship W4323975488A5026720933 @default.
- W4323975488 hasAuthorship W4323975488A5028439184 @default.
- W4323975488 hasAuthorship W4323975488A5042388620 @default.
- W4323975488 hasAuthorship W4323975488A5046672072 @default.
- W4323975488 hasAuthorship W4323975488A5049692788 @default.
- W4323975488 hasAuthorship W4323975488A5075231909 @default.
- W4323975488 hasConcept C111472728 @default.
- W4323975488 hasConcept C11171543 @default.
- W4323975488 hasConcept C111919701 @default.
- W4323975488 hasConcept C117220453 @default.
- W4323975488 hasConcept C119857082 @default.
- W4323975488 hasConcept C124101348 @default.
- W4323975488 hasConcept C13280743 @default.
- W4323975488 hasConcept C138885662 @default.
- W4323975488 hasConcept C154945302 @default.
- W4323975488 hasConcept C15744967 @default.
- W4323975488 hasConcept C185798385 @default.
- W4323975488 hasConcept C205649164 @default.
- W4323975488 hasConcept C2524010 @default.
- W4323975488 hasConcept C2776401178 @default.
- W4323975488 hasConcept C2780023022 @default.
- W4323975488 hasConcept C33923547 @default.
- W4323975488 hasConcept C41008148 @default.
- W4323975488 hasConcept C41895202 @default.
- W4323975488 hasConcept C89611455 @default.
- W4323975488 hasConcept C98045186 @default.
- W4323975488 hasConceptScore W4323975488C111472728 @default.
- W4323975488 hasConceptScore W4323975488C11171543 @default.
- W4323975488 hasConceptScore W4323975488C111919701 @default.
- W4323975488 hasConceptScore W4323975488C117220453 @default.
- W4323975488 hasConceptScore W4323975488C119857082 @default.
- W4323975488 hasConceptScore W4323975488C124101348 @default.
- W4323975488 hasConceptScore W4323975488C13280743 @default.
- W4323975488 hasConceptScore W4323975488C138885662 @default.
- W4323975488 hasConceptScore W4323975488C154945302 @default.
- W4323975488 hasConceptScore W4323975488C15744967 @default.
- W4323975488 hasConceptScore W4323975488C185798385 @default.
- W4323975488 hasConceptScore W4323975488C205649164 @default.
- W4323975488 hasConceptScore W4323975488C2524010 @default.
- W4323975488 hasConceptScore W4323975488C2776401178 @default.
- W4323975488 hasConceptScore W4323975488C2780023022 @default.
- W4323975488 hasConceptScore W4323975488C33923547 @default.
- W4323975488 hasConceptScore W4323975488C41008148 @default.