Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323975892> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4323975892 abstract "This paper proposes a recurrent neural network (RNN) based model to segment and classify multiple combined multiple power quality disturbances (PQDs) from the PQD voltage signal. A modified bi-directional long short-term memory (BI-LSTM) model with two different types of attention mechanism is developed. Firstly, an attention gate is added to the basic LSTM cell to reduce the training time and focus the memory on important PQD signal part. Secondly, attention layer is added to the BI-LSTM to obtain the more important part of the voltage signal by assigning weightage to the output of the BI-LSTM model. Finally a SoftMax classifier is applied to classify the combined PQD signal in 96 different combinations. The performance of proposed BI-LSTM model with attention gate and attention layer mechanism is compared with the performance of baseline models based on recurrent neural network (RNN) and convolution neural network (CNN). With this model, the PQD signal is easily segmented from the voltage signal which makes the process of PQD classification more accurate with less computation complexity and in less time." @default.
- W4323975892 created "2023-03-13" @default.
- W4323975892 creator A5022397096 @default.
- W4323975892 creator A5035300094 @default.
- W4323975892 creator A5083307205 @default.
- W4323975892 creator A5085177063 @default.
- W4323975892 date "2023-03-12" @default.
- W4323975892 modified "2023-10-18" @default.
- W4323975892 title "Power quality disturbance signal segmentation and classification based on modified BI-LSTM with double attention mechanism" @default.
- W4323975892 doi "https://doi.org/10.22541/au.167865037.70684326/v1" @default.
- W4323975892 hasPublicationYear "2023" @default.
- W4323975892 type Work @default.
- W4323975892 citedByCount "0" @default.
- W4323975892 crossrefType "posted-content" @default.
- W4323975892 hasAuthorship W4323975892A5022397096 @default.
- W4323975892 hasAuthorship W4323975892A5035300094 @default.
- W4323975892 hasAuthorship W4323975892A5083307205 @default.
- W4323975892 hasAuthorship W4323975892A5085177063 @default.
- W4323975892 hasBestOaLocation W43239758921 @default.
- W4323975892 hasConcept C147168706 @default.
- W4323975892 hasConcept C153180895 @default.
- W4323975892 hasConcept C154945302 @default.
- W4323975892 hasConcept C188441871 @default.
- W4323975892 hasConcept C199360897 @default.
- W4323975892 hasConcept C2779843651 @default.
- W4323975892 hasConcept C41008148 @default.
- W4323975892 hasConcept C50644808 @default.
- W4323975892 hasConcept C95623464 @default.
- W4323975892 hasConceptScore W4323975892C147168706 @default.
- W4323975892 hasConceptScore W4323975892C153180895 @default.
- W4323975892 hasConceptScore W4323975892C154945302 @default.
- W4323975892 hasConceptScore W4323975892C188441871 @default.
- W4323975892 hasConceptScore W4323975892C199360897 @default.
- W4323975892 hasConceptScore W4323975892C2779843651 @default.
- W4323975892 hasConceptScore W4323975892C41008148 @default.
- W4323975892 hasConceptScore W4323975892C50644808 @default.
- W4323975892 hasConceptScore W4323975892C95623464 @default.
- W4323975892 hasLocation W43239758921 @default.
- W4323975892 hasOpenAccess W4323975892 @default.
- W4323975892 hasPrimaryLocation W43239758921 @default.
- W4323975892 hasRelatedWork W2947839263 @default.
- W4323975892 hasRelatedWork W2962876041 @default.
- W4323975892 hasRelatedWork W2980176872 @default.
- W4323975892 hasRelatedWork W3090555870 @default.
- W4323975892 hasRelatedWork W3107204728 @default.
- W4323975892 hasRelatedWork W3108503355 @default.
- W4323975892 hasRelatedWork W3120400911 @default.
- W4323975892 hasRelatedWork W3170224572 @default.
- W4323975892 hasRelatedWork W4226420367 @default.
- W4323975892 hasRelatedWork W4287591324 @default.
- W4323975892 isParatext "false" @default.
- W4323975892 isRetracted "false" @default.
- W4323975892 workType "article" @default.