Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323979650> ?p ?o ?g. }
- W4323979650 abstract "Abstract Intrusion detection ( ID ) methods are security frameworks designed to safeguard network information systems. The strength of an intrusion detection method is dependent on the robustness of the feature selection method. This study developed a multi-level random forest algorithm for intrusion detection using a fuzzy inference system. The strengths of the filter and wrapper approaches are combined in this work to create a more advanced multi-level feature selection technique, which strengthens network security. The first stage of the multi-level feature selection is the filter method using a correlation-based feature selection to select essential features based on the multi-collinearity in the data. The correlation-based feature selection used a genetic search method to choose the best features from the feature set. The genetic search algorithm assesses the merits of each attribute, which then delivers the characteristics with the highest fitness values for selection. A rule assessment has also been used to determine whether two feature subsets have the same fitness value, which ultimately returns the feature subset with the fewest features. The second stage is a wrapper method based on the sequential forward selection method to further select top features based on the accuracy of the baseline classifier. The selected top features serve as input into the random forest algorithm for detecting intrusions. Finally, fuzzy logic was used to classify intrusions as either normal, low, medium, or high to reduce misclassification. When the developed intrusion method was compared to other existing models using the same dataset, the results revealed a higher accuracy, precision, sensitivity, specificity, and F1-score of 99.46%, 99.46%, 99.46%, 93.86%, and 99.46%, respectively. The classification of attacks using the fuzzy inference system also indicates that the developed method can correctly classify attacks with reduced misclassification. The use of a multi-level feature selection method to leverage the advantages of filter and wrapper feature selection methods and fuzzy logic for intrusion classification makes this study unique." @default.
- W4323979650 created "2023-03-13" @default.
- W4323979650 creator A5029475975 @default.
- W4323979650 creator A5032871076 @default.
- W4323979650 creator A5046397615 @default.
- W4323979650 creator A5081595143 @default.
- W4323979650 creator A5089229270 @default.
- W4323979650 creator A5089531233 @default.
- W4323979650 date "2023-03-12" @default.
- W4323979650 modified "2023-10-17" @default.
- W4323979650 title "A Multi-level Random Forest Model-Based Intrusion Detection Using Fuzzy Inference System for Internet of Things Networks" @default.
- W4323979650 cites W2023893330 @default.
- W4323979650 cites W2035009069 @default.
- W4323979650 cites W2076384720 @default.
- W4323979650 cites W2099940443 @default.
- W4323979650 cites W2150847526 @default.
- W4323979650 cites W2156612354 @default.
- W4323979650 cites W2218043766 @default.
- W4323979650 cites W2598939142 @default.
- W4323979650 cites W2780737595 @default.
- W4323979650 cites W2792628397 @default.
- W4323979650 cites W2808681425 @default.
- W4323979650 cites W2904205646 @default.
- W4323979650 cites W2912343591 @default.
- W4323979650 cites W2926367029 @default.
- W4323979650 cites W2942963954 @default.
- W4323979650 cites W2963273426 @default.
- W4323979650 cites W2997357271 @default.
- W4323979650 cites W2997585558 @default.
- W4323979650 cites W2999085084 @default.
- W4323979650 cites W3005630930 @default.
- W4323979650 cites W3006034509 @default.
- W4323979650 cites W3014362004 @default.
- W4323979650 cites W3014732532 @default.
- W4323979650 cites W3022550689 @default.
- W4323979650 cites W3047589287 @default.
- W4323979650 cites W3082592203 @default.
- W4323979650 cites W3090947704 @default.
- W4323979650 cites W3093720718 @default.
- W4323979650 cites W3122864121 @default.
- W4323979650 cites W3127179929 @default.
- W4323979650 cites W3129481580 @default.
- W4323979650 cites W3130316854 @default.
- W4323979650 cites W3149957502 @default.
- W4323979650 cites W3154404459 @default.
- W4323979650 cites W3159052717 @default.
- W4323979650 cites W3162606333 @default.
- W4323979650 cites W3197213531 @default.
- W4323979650 cites W3199544889 @default.
- W4323979650 cites W3202083238 @default.
- W4323979650 cites W3216160615 @default.
- W4323979650 cites W3216978859 @default.
- W4323979650 cites W4205500050 @default.
- W4323979650 cites W4206968235 @default.
- W4323979650 cites W4210915475 @default.
- W4323979650 cites W4211139801 @default.
- W4323979650 cites W4212986808 @default.
- W4323979650 cites W4220844189 @default.
- W4323979650 cites W4225916836 @default.
- W4323979650 cites W4229454663 @default.
- W4323979650 cites W4236629293 @default.
- W4323979650 cites W4292567366 @default.
- W4323979650 cites W4297464475 @default.
- W4323979650 doi "https://doi.org/10.1007/s44196-023-00205-w" @default.
- W4323979650 hasPublicationYear "2023" @default.
- W4323979650 type Work @default.
- W4323979650 citedByCount "2" @default.
- W4323979650 countsByYear W43239796502023 @default.
- W4323979650 crossrefType "journal-article" @default.
- W4323979650 hasAuthorship W4323979650A5029475975 @default.
- W4323979650 hasAuthorship W4323979650A5032871076 @default.
- W4323979650 hasAuthorship W4323979650A5046397615 @default.
- W4323979650 hasAuthorship W4323979650A5081595143 @default.
- W4323979650 hasAuthorship W4323979650A5089229270 @default.
- W4323979650 hasAuthorship W4323979650A5089531233 @default.
- W4323979650 hasBestOaLocation W43239796501 @default.
- W4323979650 hasConcept C104317684 @default.
- W4323979650 hasConcept C111919701 @default.
- W4323979650 hasConcept C119857082 @default.
- W4323979650 hasConcept C124101348 @default.
- W4323979650 hasConcept C137524506 @default.
- W4323979650 hasConcept C148483581 @default.
- W4323979650 hasConcept C153180895 @default.
- W4323979650 hasConcept C154945302 @default.
- W4323979650 hasConcept C169258074 @default.
- W4323979650 hasConcept C182590292 @default.
- W4323979650 hasConcept C185592680 @default.
- W4323979650 hasConcept C35525427 @default.
- W4323979650 hasConcept C41008148 @default.
- W4323979650 hasConcept C55493867 @default.
- W4323979650 hasConcept C58166 @default.
- W4323979650 hasConcept C63479239 @default.
- W4323979650 hasConcept C95623464 @default.
- W4323979650 hasConceptScore W4323979650C104317684 @default.
- W4323979650 hasConceptScore W4323979650C111919701 @default.
- W4323979650 hasConceptScore W4323979650C119857082 @default.
- W4323979650 hasConceptScore W4323979650C124101348 @default.
- W4323979650 hasConceptScore W4323979650C137524506 @default.
- W4323979650 hasConceptScore W4323979650C148483581 @default.
- W4323979650 hasConceptScore W4323979650C153180895 @default.