Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324010932> ?p ?o ?g. }
- W4324010932 endingPage "e45268" @default.
- W4324010932 startingPage "e45268" @default.
- W4324010932 abstract "Patients and families need to be provided with trusted information more than ever with the abundance of online information. Several organizations aim to build databases that can be searched based on the needs of target groups. One such group is individuals with neurodevelopmental disorders (NDDs) and their families. NDDs affect up to 18% of the population and have major social and economic impacts. The current limitations in communicating information for individuals with NDDs include the absence of shared terminology and the lack of efficient labeling processes for web resources. Because of these limitations, health professionals, support groups, and families are unable to share, combine, and access resources.We aimed to develop a natural language-based pipeline to label resources by leveraging standard and free-text vocabularies obtained through text analysis, and then represent those resources as a weighted knowledge graph.Using a combination of experts and service/organization databases, we created a data set of web resources for NDDs. Text from these websites was scraped and collected into a corpus of textual data on NDDs. This corpus was used to construct a knowledge graph suitable for use by both experts and nonexperts. Named entity recognition, topic modeling, document classification, and location detection were used to extract knowledge from the corpus.We developed a resource annotation pipeline using diverse natural language processing algorithms to annotate web resources and stored them in a structured knowledge graph. The graph contained 78,181 annotations obtained from the combination of standard terminologies and a free-text vocabulary obtained using topic modeling. An application of the constructed knowledge graph is a resource search interface using the ordered weighted averaging operator to rank resources based on a user query.We developed an automated labeling pipeline for web resources on NDDs. This work showcases how artificial intelligence-based methods, such as natural language processing and knowledge graphs for information representation, can enhance knowledge extraction and mobilization, and could be used in other fields of medicine." @default.
- W4324010932 created "2023-03-14" @default.
- W4324010932 creator A5005871512 @default.
- W4324010932 creator A5024453737 @default.
- W4324010932 creator A5083005870 @default.
- W4324010932 creator A5085322619 @default.
- W4324010932 date "2023-04-17" @default.
- W4324010932 modified "2023-10-14" @default.
- W4324010932 title "Leveraging Knowledge Graphs and Natural Language Processing for Automated Web Resource Labeling and Knowledge Mobilization in Neurodevelopmental Disorders: Development and Usability Study" @default.
- W4324010932 cites W1538085078 @default.
- W4324010932 cites W1593766773 @default.
- W4324010932 cites W1981038351 @default.
- W4324010932 cites W2000569744 @default.
- W4324010932 cites W2005545412 @default.
- W4324010932 cites W2053386373 @default.
- W4324010932 cites W2067506377 @default.
- W4324010932 cites W2114913305 @default.
- W4324010932 cites W2134014039 @default.
- W4324010932 cites W2139625398 @default.
- W4324010932 cites W2159583324 @default.
- W4324010932 cites W2346443999 @default.
- W4324010932 cites W2586357380 @default.
- W4324010932 cites W2587223734 @default.
- W4324010932 cites W2606121189 @default.
- W4324010932 cites W2606363764 @default.
- W4324010932 cites W2754665678 @default.
- W4324010932 cites W2789747177 @default.
- W4324010932 cites W2884694394 @default.
- W4324010932 cites W2970641574 @default.
- W4324010932 cites W3004611733 @default.
- W4324010932 cites W3009352144 @default.
- W4324010932 cites W3022231948 @default.
- W4324010932 cites W3036397942 @default.
- W4324010932 cites W3049686861 @default.
- W4324010932 cites W3080720302 @default.
- W4324010932 cites W3089706816 @default.
- W4324010932 cites W3092238560 @default.
- W4324010932 cites W3103867242 @default.
- W4324010932 cites W3106224367 @default.
- W4324010932 cites W3106811464 @default.
- W4324010932 cites W3111386522 @default.
- W4324010932 cites W3115352405 @default.
- W4324010932 cites W4221103262 @default.
- W4324010932 cites W4226370857 @default.
- W4324010932 cites W4252276115 @default.
- W4324010932 cites W4312848188 @default.
- W4324010932 cites W4320525813 @default.
- W4324010932 doi "https://doi.org/10.2196/45268" @default.
- W4324010932 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37067865" @default.
- W4324010932 hasPublicationYear "2023" @default.
- W4324010932 type Work @default.
- W4324010932 citedByCount "0" @default.
- W4324010932 crossrefType "journal-article" @default.
- W4324010932 hasAuthorship W4324010932A5005871512 @default.
- W4324010932 hasAuthorship W4324010932A5024453737 @default.
- W4324010932 hasAuthorship W4324010932A5083005870 @default.
- W4324010932 hasAuthorship W4324010932A5085322619 @default.
- W4324010932 hasBestOaLocation W43240109321 @default.
- W4324010932 hasConcept C107457646 @default.
- W4324010932 hasConcept C110615152 @default.
- W4324010932 hasConcept C136764020 @default.
- W4324010932 hasConcept C138885662 @default.
- W4324010932 hasConcept C144024400 @default.
- W4324010932 hasConcept C149923435 @default.
- W4324010932 hasConcept C154945302 @default.
- W4324010932 hasConcept C170130773 @default.
- W4324010932 hasConcept C204321447 @default.
- W4324010932 hasConcept C2522767166 @default.
- W4324010932 hasConcept C2777601683 @default.
- W4324010932 hasConcept C2908647359 @default.
- W4324010932 hasConcept C41008148 @default.
- W4324010932 hasConcept C41895202 @default.
- W4324010932 hasConcept C547195049 @default.
- W4324010932 hasConcept C56739046 @default.
- W4324010932 hasConceptScore W4324010932C107457646 @default.
- W4324010932 hasConceptScore W4324010932C110615152 @default.
- W4324010932 hasConceptScore W4324010932C136764020 @default.
- W4324010932 hasConceptScore W4324010932C138885662 @default.
- W4324010932 hasConceptScore W4324010932C144024400 @default.
- W4324010932 hasConceptScore W4324010932C149923435 @default.
- W4324010932 hasConceptScore W4324010932C154945302 @default.
- W4324010932 hasConceptScore W4324010932C170130773 @default.
- W4324010932 hasConceptScore W4324010932C204321447 @default.
- W4324010932 hasConceptScore W4324010932C2522767166 @default.
- W4324010932 hasConceptScore W4324010932C2777601683 @default.
- W4324010932 hasConceptScore W4324010932C2908647359 @default.
- W4324010932 hasConceptScore W4324010932C41008148 @default.
- W4324010932 hasConceptScore W4324010932C41895202 @default.
- W4324010932 hasConceptScore W4324010932C547195049 @default.
- W4324010932 hasConceptScore W4324010932C56739046 @default.
- W4324010932 hasLocation W43240109321 @default.
- W4324010932 hasLocation W43240109322 @default.
- W4324010932 hasLocation W43240109323 @default.
- W4324010932 hasOpenAccess W4324010932 @default.
- W4324010932 hasPrimaryLocation W43240109321 @default.
- W4324010932 hasRelatedWork W1996158076 @default.
- W4324010932 hasRelatedWork W2051526118 @default.
- W4324010932 hasRelatedWork W2052121952 @default.