Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324017941> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4324017941 endingPage "5629" @default.
- W4324017941 startingPage "5621" @default.
- W4324017941 abstract "Abstract Background Magnetic resonance imaging scanner faults can be missed during routine quality assurance (QA) if they are subtle, intermittent, or the test being performed is insensitive to the type of fault. Coil element malfunction is a common fault within MRI scanners, which may go undetected for quite some time. Consequently, this may lead to poor image quality and the potential for misdiagnoses. Purpose Daily QA typically consists of an automated signal to noise ratio test and in some instances this test is insensitive to coil element malfunction. Instead of relying on daily QA testing, it was proposed to utilize patient images in conjunction with a trained neural network to detect coil element malfunction, even when it presents as a very subtle defect. The advantage to using patient images over phantom testing is real‐time monitoring can be achieved. This allows clinical staff to focus more on patient throughput without being burdened by daily testing. Methods A neural network was trained using simulated coil failure in 3958 abdominal or pelvic images from 497 patients. The accuracy of the trained network was then tested on an unseen dataset of 109 images from which 44 patients which had coil element malfunction present. Five MRI radiographers were shown 249 images with and without real coil malfunction to assess their accuracy compared to the neural network in identifying the scanner fault. Results The neural network achieved an accuracy of 91.74% in identifying coil element malfunction in the unseen data. Radiographers tasked with identifying coil element malfunction had an average accuracy of 59.99%. In the same test case, the neural network outperformed all radiographers with an accuracy of 91.56%. Conclusion This work demonstrates that neural networks trained with artificial data can successfully identify MRI scanner coil element malfunction in clinical images. The method provided better accuracy than MRI radiographers (technologists) at identifying coil element malfunction and highlights the potential utility of AI methods as an alternative to support traditional QA. Further, our methodology of training neural networks with simulated data could potentially identify other faults, allowing centers to produce robust fault detection systems with minimal data." @default.
- W4324017941 created "2023-03-14" @default.
- W4324017941 creator A5036733660 @default.
- W4324017941 creator A5061247788 @default.
- W4324017941 creator A5078824764 @default.
- W4324017941 date "2023-03-21" @default.
- W4324017941 modified "2023-10-16" @default.
- W4324017941 title "Application of synthetic data in the training of artificial intelligence for automated quality assurance in magnetic resonance imaging" @default.
- W4324017941 cites W2012231760 @default.
- W4324017941 cites W2053315546 @default.
- W4324017941 cites W2102150307 @default.
- W4324017941 cites W2108964857 @default.
- W4324017941 cites W2588978745 @default.
- W4324017941 cites W2617669016 @default.
- W4324017941 cites W2622391859 @default.
- W4324017941 cites W2789357782 @default.
- W4324017941 cites W2793843524 @default.
- W4324017941 cites W2805311321 @default.
- W4324017941 cites W2887467581 @default.
- W4324017941 cites W2891463586 @default.
- W4324017941 cites W2897654901 @default.
- W4324017941 cites W2916800028 @default.
- W4324017941 cites W2998857944 @default.
- W4324017941 cites W3002133492 @default.
- W4324017941 cites W3003817677 @default.
- W4324017941 cites W3012327307 @default.
- W4324017941 cites W3035374448 @default.
- W4324017941 cites W3042642124 @default.
- W4324017941 cites W3115721851 @default.
- W4324017941 doi "https://doi.org/10.1002/mp.16361" @default.
- W4324017941 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36908158" @default.
- W4324017941 hasPublicationYear "2023" @default.
- W4324017941 type Work @default.
- W4324017941 citedByCount "0" @default.
- W4324017941 crossrefType "journal-article" @default.
- W4324017941 hasAuthorship W4324017941A5036733660 @default.
- W4324017941 hasAuthorship W4324017941A5061247788 @default.
- W4324017941 hasAuthorship W4324017941A5078824764 @default.
- W4324017941 hasConcept C104293457 @default.
- W4324017941 hasConcept C106436119 @default.
- W4324017941 hasConcept C115961682 @default.
- W4324017941 hasConcept C119599485 @default.
- W4324017941 hasConcept C126838900 @default.
- W4324017941 hasConcept C127413603 @default.
- W4324017941 hasConcept C143409427 @default.
- W4324017941 hasConcept C153180895 @default.
- W4324017941 hasConcept C154945302 @default.
- W4324017941 hasConcept C21547014 @default.
- W4324017941 hasConcept C2778618615 @default.
- W4324017941 hasConcept C2779751349 @default.
- W4324017941 hasConcept C2989005 @default.
- W4324017941 hasConcept C30403606 @default.
- W4324017941 hasConcept C31972630 @default.
- W4324017941 hasConcept C41008148 @default.
- W4324017941 hasConcept C50644808 @default.
- W4324017941 hasConcept C55020928 @default.
- W4324017941 hasConcept C71924100 @default.
- W4324017941 hasConcept C99498987 @default.
- W4324017941 hasConceptScore W4324017941C104293457 @default.
- W4324017941 hasConceptScore W4324017941C106436119 @default.
- W4324017941 hasConceptScore W4324017941C115961682 @default.
- W4324017941 hasConceptScore W4324017941C119599485 @default.
- W4324017941 hasConceptScore W4324017941C126838900 @default.
- W4324017941 hasConceptScore W4324017941C127413603 @default.
- W4324017941 hasConceptScore W4324017941C143409427 @default.
- W4324017941 hasConceptScore W4324017941C153180895 @default.
- W4324017941 hasConceptScore W4324017941C154945302 @default.
- W4324017941 hasConceptScore W4324017941C21547014 @default.
- W4324017941 hasConceptScore W4324017941C2778618615 @default.
- W4324017941 hasConceptScore W4324017941C2779751349 @default.
- W4324017941 hasConceptScore W4324017941C2989005 @default.
- W4324017941 hasConceptScore W4324017941C30403606 @default.
- W4324017941 hasConceptScore W4324017941C31972630 @default.
- W4324017941 hasConceptScore W4324017941C41008148 @default.
- W4324017941 hasConceptScore W4324017941C50644808 @default.
- W4324017941 hasConceptScore W4324017941C55020928 @default.
- W4324017941 hasConceptScore W4324017941C71924100 @default.
- W4324017941 hasConceptScore W4324017941C99498987 @default.
- W4324017941 hasIssue "9" @default.
- W4324017941 hasLocation W43240179411 @default.
- W4324017941 hasLocation W43240179412 @default.
- W4324017941 hasOpenAccess W4324017941 @default.
- W4324017941 hasPrimaryLocation W43240179411 @default.
- W4324017941 hasRelatedWork W1503592206 @default.
- W4324017941 hasRelatedWork W1978640906 @default.
- W4324017941 hasRelatedWork W1993699893 @default.
- W4324017941 hasRelatedWork W1999705310 @default.
- W4324017941 hasRelatedWork W2499114499 @default.
- W4324017941 hasRelatedWork W2736497215 @default.
- W4324017941 hasRelatedWork W2956098583 @default.
- W4324017941 hasRelatedWork W3204625103 @default.
- W4324017941 hasRelatedWork W4308840296 @default.
- W4324017941 hasRelatedWork W4308893453 @default.
- W4324017941 hasVolume "50" @default.
- W4324017941 isParatext "false" @default.
- W4324017941 isRetracted "false" @default.
- W4324017941 workType "article" @default.