Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324018469> ?p ?o ?g. }
- W4324018469 endingPage "e1010967" @default.
- W4324018469 startingPage "e1010967" @default.
- W4324018469 abstract "Pneumonia remains a leading cause of hospitalization and death among young children worldwide, and the diagnostic challenge of differentiating bacterial from non-bacterial pneumonia is the main driver of antibiotic use for treating pneumonia in children. Causal Bayesian networks (BNs) serve as powerful tools for this problem as they provide clear maps of probabilistic relationships between variables and produce results in an explainable way by incorporating both domain expert knowledge and numerical data.We used domain expert knowledge and data in combination and iteratively, to construct, parameterise and validate a causal BN to predict causative pathogens for childhood pneumonia. Expert knowledge elicitation occurred through a series of group workshops, surveys and one-on-one meetings involving 6-8 experts from diverse domain areas. The model performance was evaluated based on both quantitative metrics and qualitative expert validation. Sensitivity analyses were conducted to investigate how the target output is influenced by varying key assumptions of a particularly high degree of uncertainty around data or domain expert knowledge.Designed to apply to a cohort of children with X-ray confirmed pneumonia who presented to a tertiary paediatric hospital in Australia, the resulting BN offers explainable and quantitative predictions on a range of variables of interest, including the diagnosis of bacterial pneumonia, detection of respiratory pathogens in the nasopharynx, and the clinical phenotype of a pneumonia episode. Satisfactory numeric performance has been achieved including an area under the receiver operating characteristic curve of 0.8 in predicting clinically-confirmed bacterial pneumonia with sensitivity 88% and specificity 66% given certain input scenarios (i.e., information that is available and entered into the model) and trade-off preferences (i.e., relative weightings of the consequences of false positive versus false negative predictions). We specifically highlight that a desirable model output threshold for practical use is very dependent upon different input scenarios and trade-off preferences. Three commonly encountered scenarios were presented to demonstrate the potential usefulness of the BN outputs in various clinical pictures.To our knowledge, this is the first causal model developed to help determine the causative pathogen for paediatric pneumonia. We have shown how the method works and how it would help decision making on the use of antibiotics, providing insight into how computational model predictions may be translated to actionable decisions in practice. We discussed key next steps including external validation, adaptation and implementation. Our model framework and the methodological approach can be adapted beyond our context to broad respiratory infections and geographical and healthcare settings." @default.
- W4324018469 created "2023-03-14" @default.
- W4324018469 creator A5001025590 @default.
- W4324018469 creator A5004720995 @default.
- W4324018469 creator A5005203758 @default.
- W4324018469 creator A5010698070 @default.
- W4324018469 creator A5020950762 @default.
- W4324018469 creator A5021466989 @default.
- W4324018469 creator A5030667842 @default.
- W4324018469 creator A5035016619 @default.
- W4324018469 creator A5038024742 @default.
- W4324018469 creator A5053426025 @default.
- W4324018469 creator A5054461236 @default.
- W4324018469 creator A5061766751 @default.
- W4324018469 creator A5070207222 @default.
- W4324018469 creator A5073224659 @default.
- W4324018469 creator A5073695706 @default.
- W4324018469 creator A5079221956 @default.
- W4324018469 creator A5086829922 @default.
- W4324018469 date "2023-03-13" @default.
- W4324018469 modified "2023-09-30" @default.
- W4324018469 title "Predicting the causative pathogen among children with pneumonia using a causal Bayesian network" @default.
- W4324018469 cites W107619411 @default.
- W4324018469 cites W1967560302 @default.
- W4324018469 cites W1991880520 @default.
- W4324018469 cites W2014825503 @default.
- W4324018469 cites W2033087964 @default.
- W4324018469 cites W2038014125 @default.
- W4324018469 cites W2048490039 @default.
- W4324018469 cites W2053182404 @default.
- W4324018469 cites W2074305241 @default.
- W4324018469 cites W2088746631 @default.
- W4324018469 cites W2093380568 @default.
- W4324018469 cites W2101589741 @default.
- W4324018469 cites W2109764475 @default.
- W4324018469 cites W2115194859 @default.
- W4324018469 cites W2136499920 @default.
- W4324018469 cites W2147634646 @default.
- W4324018469 cites W2148284486 @default.
- W4324018469 cites W2156126612 @default.
- W4324018469 cites W2310015452 @default.
- W4324018469 cites W252014284 @default.
- W4324018469 cites W2550400519 @default.
- W4324018469 cites W2593051680 @default.
- W4324018469 cites W2727392759 @default.
- W4324018469 cites W2741868287 @default.
- W4324018469 cites W2809388401 @default.
- W4324018469 cites W2897003742 @default.
- W4324018469 cites W2901356734 @default.
- W4324018469 cites W2918649235 @default.
- W4324018469 cites W2926242485 @default.
- W4324018469 cites W2944437597 @default.
- W4324018469 cites W2951609865 @default.
- W4324018469 cites W2978928985 @default.
- W4324018469 cites W3033983486 @default.
- W4324018469 cites W3035422487 @default.
- W4324018469 cites W3153434542 @default.
- W4324018469 cites W3160838879 @default.
- W4324018469 cites W4210858667 @default.
- W4324018469 cites W4243223880 @default.
- W4324018469 cites W4281769426 @default.
- W4324018469 cites W4290700173 @default.
- W4324018469 doi "https://doi.org/10.1371/journal.pcbi.1010967" @default.
- W4324018469 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36913404" @default.
- W4324018469 hasPublicationYear "2023" @default.
- W4324018469 type Work @default.
- W4324018469 citedByCount "1" @default.
- W4324018469 countsByYear W43240184692023 @default.
- W4324018469 crossrefType "journal-article" @default.
- W4324018469 hasAuthorship W4324018469A5001025590 @default.
- W4324018469 hasAuthorship W4324018469A5004720995 @default.
- W4324018469 hasAuthorship W4324018469A5005203758 @default.
- W4324018469 hasAuthorship W4324018469A5010698070 @default.
- W4324018469 hasAuthorship W4324018469A5020950762 @default.
- W4324018469 hasAuthorship W4324018469A5021466989 @default.
- W4324018469 hasAuthorship W4324018469A5030667842 @default.
- W4324018469 hasAuthorship W4324018469A5035016619 @default.
- W4324018469 hasAuthorship W4324018469A5038024742 @default.
- W4324018469 hasAuthorship W4324018469A5053426025 @default.
- W4324018469 hasAuthorship W4324018469A5054461236 @default.
- W4324018469 hasAuthorship W4324018469A5061766751 @default.
- W4324018469 hasAuthorship W4324018469A5070207222 @default.
- W4324018469 hasAuthorship W4324018469A5073224659 @default.
- W4324018469 hasAuthorship W4324018469A5073695706 @default.
- W4324018469 hasAuthorship W4324018469A5079221956 @default.
- W4324018469 hasAuthorship W4324018469A5086829922 @default.
- W4324018469 hasBestOaLocation W43240184691 @default.
- W4324018469 hasConcept C119857082 @default.
- W4324018469 hasConcept C126322002 @default.
- W4324018469 hasConcept C142724271 @default.
- W4324018469 hasConcept C154945302 @default.
- W4324018469 hasConcept C177713679 @default.
- W4324018469 hasConcept C2776102371 @default.
- W4324018469 hasConcept C2777914695 @default.
- W4324018469 hasConcept C33724603 @default.
- W4324018469 hasConcept C41008148 @default.
- W4324018469 hasConcept C58471807 @default.
- W4324018469 hasConcept C71924100 @default.