Matches in SemOpenAlex for { <https://semopenalex.org/work/W4324020360> ?p ?o ?g. }
- W4324020360 endingPage "e0281900" @default.
- W4324020360 startingPage "e0281900" @default.
- W4324020360 abstract "Machine learning (ML) algorithms to detect critical findings on head CTs may expedite patient management. Most ML algorithms for diagnostic imaging analysis utilize dichotomous classifications to determine whether a specific abnormality is present. However, imaging findings may be indeterminate, and algorithmic inferences may have substantial uncertainty. We incorporated awareness of uncertainty into an ML algorithm that detects intracranial hemorrhage or other urgent intracranial abnormalities and evaluated prospectively identified, 1000 consecutive noncontrast head CTs assigned to Emergency Department Neuroradiology for interpretation. The algorithm classified the scans into high (IC+) and low (IC-) probabilities for intracranial hemorrhage or other urgent abnormalities. All other cases were designated as No Prediction (NP) by the algorithm. The positive predictive value for IC+ cases (N = 103) was 0.91 (CI: 0.84–0.96), and the negative predictive value for IC- cases (N = 729) was 0.94 (0.91–0.96). Admission, neurosurgical intervention, and 30-day mortality rates for IC+ was 75% (63–84), 35% (24–47), and 10% (4–20), compared to 43% (40–47), 4% (3–6), and 3% (2–5) for IC-. There were 168 NP cases, of which 32% had intracranial hemorrhage or other urgent abnormalities, 31% had artifacts and postoperative changes, and 29% had no abnormalities. An ML algorithm incorporating uncertainty classified most head CTs into clinically relevant groups with high predictive values and may help accelerate the management of patients with intracranial hemorrhage or other urgent intracranial abnormalities." @default.
- W4324020360 created "2023-03-14" @default.
- W4324020360 creator A5001052369 @default.
- W4324020360 creator A5001518072 @default.
- W4324020360 creator A5009536139 @default.
- W4324020360 creator A5010639373 @default.
- W4324020360 creator A5017639292 @default.
- W4324020360 creator A5022761075 @default.
- W4324020360 creator A5031248234 @default.
- W4324020360 creator A5044166495 @default.
- W4324020360 creator A5046818334 @default.
- W4324020360 creator A5047837211 @default.
- W4324020360 creator A5052440779 @default.
- W4324020360 creator A5060527347 @default.
- W4324020360 creator A5061147282 @default.
- W4324020360 creator A5068389020 @default.
- W4324020360 creator A5072917923 @default.
- W4324020360 creator A5078486656 @default.
- W4324020360 creator A5079242876 @default.
- W4324020360 creator A5082115758 @default.
- W4324020360 creator A5087570594 @default.
- W4324020360 creator A5090514346 @default.
- W4324020360 creator A5091480554 @default.
- W4324020360 date "2023-03-13" @default.
- W4324020360 modified "2023-10-14" @default.
- W4324020360 title "Incorporating algorithmic uncertainty into a clinical machine deep learning algorithm for urgent head CTs" @default.
- W4324020360 cites W2615076917 @default.
- W4324020360 cites W2795774310 @default.
- W4324020360 cites W2905307056 @default.
- W4324020360 cites W3011245295 @default.
- W4324020360 cites W3091082337 @default.
- W4324020360 cites W3100962952 @default.
- W4324020360 cites W3118929067 @default.
- W4324020360 cites W3134774296 @default.
- W4324020360 cites W3134815439 @default.
- W4324020360 cites W4206010335 @default.
- W4324020360 cites W4210943902 @default.
- W4324020360 cites W4313571729 @default.
- W4324020360 doi "https://doi.org/10.1371/journal.pone.0281900" @default.
- W4324020360 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36913348" @default.
- W4324020360 hasPublicationYear "2023" @default.
- W4324020360 type Work @default.
- W4324020360 citedByCount "0" @default.
- W4324020360 crossrefType "journal-article" @default.
- W4324020360 hasAuthorship W4324020360A5001052369 @default.
- W4324020360 hasAuthorship W4324020360A5001518072 @default.
- W4324020360 hasAuthorship W4324020360A5009536139 @default.
- W4324020360 hasAuthorship W4324020360A5010639373 @default.
- W4324020360 hasAuthorship W4324020360A5017639292 @default.
- W4324020360 hasAuthorship W4324020360A5022761075 @default.
- W4324020360 hasAuthorship W4324020360A5031248234 @default.
- W4324020360 hasAuthorship W4324020360A5044166495 @default.
- W4324020360 hasAuthorship W4324020360A5046818334 @default.
- W4324020360 hasAuthorship W4324020360A5047837211 @default.
- W4324020360 hasAuthorship W4324020360A5052440779 @default.
- W4324020360 hasAuthorship W4324020360A5060527347 @default.
- W4324020360 hasAuthorship W4324020360A5061147282 @default.
- W4324020360 hasAuthorship W4324020360A5068389020 @default.
- W4324020360 hasAuthorship W4324020360A5072917923 @default.
- W4324020360 hasAuthorship W4324020360A5078486656 @default.
- W4324020360 hasAuthorship W4324020360A5079242876 @default.
- W4324020360 hasAuthorship W4324020360A5082115758 @default.
- W4324020360 hasAuthorship W4324020360A5087570594 @default.
- W4324020360 hasAuthorship W4324020360A5090514346 @default.
- W4324020360 hasAuthorship W4324020360A5091480554 @default.
- W4324020360 hasBestOaLocation W43240203601 @default.
- W4324020360 hasConcept C11413529 @default.
- W4324020360 hasConcept C118552586 @default.
- W4324020360 hasConcept C119857082 @default.
- W4324020360 hasConcept C126322002 @default.
- W4324020360 hasConcept C126838900 @default.
- W4324020360 hasConcept C16568411 @default.
- W4324020360 hasConcept C2779889316 @default.
- W4324020360 hasConcept C3019719930 @default.
- W4324020360 hasConcept C41008148 @default.
- W4324020360 hasConcept C513090587 @default.
- W4324020360 hasConcept C71924100 @default.
- W4324020360 hasConceptScore W4324020360C11413529 @default.
- W4324020360 hasConceptScore W4324020360C118552586 @default.
- W4324020360 hasConceptScore W4324020360C119857082 @default.
- W4324020360 hasConceptScore W4324020360C126322002 @default.
- W4324020360 hasConceptScore W4324020360C126838900 @default.
- W4324020360 hasConceptScore W4324020360C16568411 @default.
- W4324020360 hasConceptScore W4324020360C2779889316 @default.
- W4324020360 hasConceptScore W4324020360C3019719930 @default.
- W4324020360 hasConceptScore W4324020360C41008148 @default.
- W4324020360 hasConceptScore W4324020360C513090587 @default.
- W4324020360 hasConceptScore W4324020360C71924100 @default.
- W4324020360 hasIssue "3" @default.
- W4324020360 hasLocation W43240203601 @default.
- W4324020360 hasLocation W43240203602 @default.
- W4324020360 hasLocation W43240203603 @default.
- W4324020360 hasLocation W43240203604 @default.
- W4324020360 hasOpenAccess W4324020360 @default.
- W4324020360 hasPrimaryLocation W43240203601 @default.
- W4324020360 hasRelatedWork W1998837992 @default.
- W4324020360 hasRelatedWork W2000010551 @default.
- W4324020360 hasRelatedWork W2011959699 @default.